最新Java基础系列课程--Day14-多线程编程

简介: 最新Java基础系列课程--Day14-多线程编程

# day09-多线程

一、多线程

1.1 基本概念

线程其实是程序中的一条执行路径。

多线程(Multithread)是指在同一个程序中同时存在几个执行体,按几条不同的执行路径共同工作的情况。

先来区分几个概念:

程序(Program):程序是含有指令和数据的文件,被存储在磁盘或其他的数据存储设备中,程序是静态的代码。
进程(Process):进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。
多任务(Multi task):多任务是指在一个系统中可以同时运行多个程序,即有多个独立运行的任务,每一个任务对应一个进程。
线程(Thread):线程是一个比进程更小的执行单位。一个进程在其执行过程中可以产生多个线程,形成多条执行线路。

我们之前写过的程序,其实都是单线程程序,如下图代码,如果前面的for循环没有执行完,for循环下面的代码是不会执行的。

怎样的程序才是多线程程序呢? 如下图所示,12306网站就是支持多线程的,因为同时可以有很多人一起进入网站购票,而且每一个人互不影响。再比如百度网盘,可以同时下载或者上传多个文件。这些程序中其实就有多条执行路径,每一条执行执行路径就是一条线程,所以这样的程序就是多线程程序。

1.2 线程的状态与生命周期

接下来,我们学习最后一个有关线程的知识点,叫做线程的生命周期。所谓生命周期就是线程从生到死的过程中间有哪些状态,以及这些状态之间是怎么切换的。

为了让大家同好的理解线程的生命周期,先用人的生命周期举个例子,人从生到死有下面的几个过程。在人的生命周期过程中,各种状态之间可能会有切换,线程也是一样的。

接下来就来学习线程的生命周期。在Thread类中有一个嵌套的枚举类叫Thread.Status,这里面定义了线程的6中状态。如下图所示

NEW: 新建状态,线程还没有启动
RUNNABLE: 可以运行状态,线程调用了start()方法后处于这个状态
BLOCKED: 锁阻塞状态,没有获取到锁处于这个状态
WAITING: 无限等待状态,线程执行时被调用了wait方法处于这个状态
TIMED_WAITING: 计时等待状态,线程执行时被调用了sleep(毫秒)或者wait(毫秒)方法处于这个状态
TERMINATED: 终止状态, 线程执行完毕或者遇到异常时,处于这个状态。

这几种状态之间切换关系如下图所示

1.3 线程的调度与优先级

调度:指在各个线程之间分配CPU资源。线程调度有两种模型:分时模型和抢占模型。

优先级:决定了线程被CPU执行的优先顺序。

Java语言中线程的优先级从低到高以整数1~10表示,共分为10级。Thread类有三个关于线程优先级的静态变量,MIN_PRIORITY表示最小优先级,通常为1;MAX_PRIORITY表示最高优先级,通常为10;NORM_PRIORITY表示普通优先级,缺省值为5。

对应一个新建的线程,系统会遵循如下的原则为其指定优先级:

(1)新建线程将继承创建它的父线程的优先级。父线程是指执行创建新线程对象语句所在的线程,它可能是程序的主线程,也可能是某一个用户自定义的线程。

(2)一般情况下,主线程具有普通优先级。

1.4 线程创建方式1

Java语言中实现多线程的方法有两种,一种是继承java.lang包中的Thread类,另一种是用户在定义自己的类中实现Runnable接口。但不管采用哪种方法,都要用到Java语言类库中的Thread类以及相关的方法。

Java为开发者提供了一个类叫做Thread,此类的对象用来表示线程。创建线程并执行线程的步骤如下

1.定义一个子类继承Thread类,并重写run方法
2.创建Thread的子类对象
3.调用start方法启动线程(启动线程后,会自动执行run方法中的代码)

代码如下

public class MyThread extends Thread{
    // 2、必须重写Thread类的run方法
    @Override
    public void run() {
        // 描述线程的执行任务。
        for (int i = 1; i <= 5; i++) {
            System.out.println("子线程MyThread输出:" + i);
        }
    }
}

再定义一个测试类,在测试类中创建MyThread线程对象,并启动线程

public class ThreadTest1 {
    // main方法是由一条默认的主线程负责执行。
    public static void main(String[] args) {
        // 3、创建MyThread线程类的对象代表一个线程
        Thread t = new MyThread();
        // 4、启动线程(自动执行run方法的)
        t.start(); 
        for (int i = 1; i <= 5; i++) {
            System.out.println("主线程main输出:" + i);
        }
    }
}

打印结果如下图所示,我们会发现MyThread和main线程在相互抢夺CPU的执行权(注意:哪一个线程先执行,哪一个线程后执行,目前我们是无法控制的,每次输出结果都会不一样

最后我们还需要注意一点:不能直接去调用run方法,如果直接调用run方法就不认为是一条线程启动了,而是把Thread当做一个普通对象,此时run方法中的执行的代码会成为主线程的一部分。此时执行结果是这样的。

1.5 线程创建方式2

接下来我们学习线程的第二种创建方式。Java为开发者提供了一个Runnable接口,该接口中只有一个run方法,意思就是通过Runnable接口的实现类对象专门来表示线程要执行的任务。具体步骤如下

1.先写一个Runnable接口的实现类,重写run方法(这里面就是线程要执行的代码)
2.再创建一个Runnable实现类的对象
3.创建一个Thread对象,把Runnable实现类的对象传递给Thread
4.调用Thread对象的start()方法启动线程(启动后会自动执行Runnable里面的run方法)

代码如下:先准备一个Runnable接口的实现类

/**
 * 1、定义一个任务类,实现Runnable接口
 */
public class MyRunnable implements Runnable{
    // 2、重写runnable的run方法
    @Override
    public void run() {
        // 线程要执行的任务。
        for (int i = 1; i <= 5; i++) {
            System.out.println("子线程输出 ===》" + i);
        }
    }
}

再写一个测试类,在测试类中创建线程对象,并执行线程

public class ThreadTest2 {
    public static void main(String[] args) {
        // 3、创建任务对象。
        Runnable target = new MyRunnable();
        // 4、把任务对象交给一个线程对象处理。
        //  public Thread(Runnable target)
        new Thread(target).start();
        for (int i = 1; i <= 5; i++) {
            System.out.println("主线程main输出 ===》" + i);
        }
    }
}

运行上面代码,结果如下图所示**(注意:没有出现下面交替执行的效果,也是正常的)**

主线程main输出 ===》1
主线程main输出 ===》2
主线程main输出 ===》3
子线程输出 ===》1
子线程输出 ===》2
子线程输出 ===》3
子线程输出 ===》4
子线程输出 ===》5
主线程main输出 ===》4
主线程main输出 ===》5

1.6 线程创建方式2—匿名内部类

同学们注意了,现在这种写法不是新知识。只是将前面第二种方式用匿名内部类改写一下。因为同学们在看别人写的代码时,有可能会看到这种写法。你知道是怎么回事就可以了。

刚刚我们学习的第二种线程的创建方式,需要写一个Runnable接口的实现类,然后再把Runnable实现类的对象传递给Thread对象。

现在我不想写Runnable实现类,于是可以直接创建Runnable接口的匿名内部类对象,传递给Thread对象。

代码如下

public class ThreadTest2_2 {
    public static void main(String[] args) {
        // 1、直接创建Runnable接口的匿名内部类形式(任务对象)
        Runnable target = new Runnable() {
            @Override
            public void run() {
                for (int i = 1; i <= 5; i++) {
                    System.out.println("子线程1输出:" + i);
                }
            }
        };
        new Thread(target).start();
        // 简化形式1:
        new Thread(new Runnable() {
            @Override
            public void run() {
                for (int i = 1; i <= 5; i++) {
                    System.out.println("子线程2输出:" + i);
                }
            }
        }).start();
        // 简化形式2:
        new Thread(() -> {
                for (int i = 1; i <= 5; i++) {
                    System.out.println("子线程3输出:" + i);
                }
        }).start();
        for (int i = 1; i <= 5; i++) {
            System.out.println("主线程main输出:" + i);
        }
    }
}

1.7 线程的创建方式3

接下来,我们学习线程的第三种创建方式。已经有两种了为什么还有要第三种呢? 这样,我们先分析一下前面两种都存在的一个问题。然后再引出第三种可以解决这个问题。

  • 假设线程执行完毕之后有一些数据需要返回,前面两种方式重写的run方法均没有返回结果。
public void run(){
    ...线程执行的代码...
}
  • JDK5提供了Callable接口和FutureTask类来创建线程,它最大的优点就是有返回值。
    在Callable接口中有一个call方法,重写call方法就是线程要执行的代码,它是有返回值的
public T call(){
    ...线程执行的代码...
    return 结果;
}

第三种创建线程的方式,步骤如下

1.先定义一个Callable接口的实现类,重写call方法
2.创建Callable实现类的对象
3.创建FutureTask类的对象,将Callable对象传递给FutureTask
4.创建Thread对象,将Future对象传递给Thread
5.调用Thread的start()方法启动线程(启动后会自动执行call方法)
   等call()方法执行完之后,会自动将返回值结果封装到FutrueTask对象中
6.调用FutrueTask对的get()方法获取返回结果

代码如下:先准备一个Callable接口的实现类

/**
 * 1、让子类继承Thread线程类。
 */
public class MyThread extends Thread{
    // 2、必须重写Thread类的run方法
    @Override
    public void run() {
        // 描述线程的执行任务。
        for (int i = 1; i <= 5; i++) {
            System.out.println("子线程MyThread输出:" + i);
        }
    }
}

再定义一个测试类,在测试类中创建线程并启动线程,还要获取返回结果

public class ThreadTest3 {
    public static void main(String[] args) throws Exception {
        // 3、创建一个Callable的对象
        Callable<String> call = new MyCallable(100);
        // 4、把Callable的对象封装成一个FutureTask对象(任务对象)
        // 未来任务对象的作用?
        // 1、是一个任务对象,实现了Runnable对象.
        // 2、可以在线程执行完毕之后,用未来任务对象调用get方法获取线程执行完毕后的结果。
        FutureTask<String> f1  = new FutureTask<>(call);
        // 5、把任务对象交给一个Thread对象
        new Thread(f1).start();
        Callable<String> call2 = new MyCallable(200);
        FutureTask<String> f2  = new FutureTask<>(call2);
        new Thread(f2).start();
        // 6、获取线程执行完毕后返回的结果。
        // 注意:如果执行到这儿,假如上面的线程还没有执行完毕
        // 这里的代码会暂停,等待上面线程执行完毕后才会获取结果。
        String rs = f1.get();
        System.out.println(rs);
        String rs2 = f2.get();
        System.out.println(rs2);
    }
}

二、多线程常用方法

下面我们演示一下getName()setName(String name)currentThread()sleep(long time)这些方法的使用效果。

public class MyThread extends Thread{
    public MyThread(String name){
        super(name); //1.执行父类Thread(String name)构造器,为当前线程设置名字了
    }
    @Override
    public void run() {
        //2.currentThread() 哪个线程执行它,它就会得到哪个线程对象。
        Thread t = Thread.currentThread();
        for (int i = 1; i <= 3; i++) {
            //3.getName() 获取线程名称
            System.out.println(t.getName() + "输出:" + i);
        }
    }
}

再测试类中,创建线程对象,并启动线程

public class ThreadTest1 {
    public static void main(String[] args) {
        Thread t1 = new MyThread();
        t1.setName(String name) //设置线程名称;
        t1.start();
        System.out.println(t1.getName());  //Thread-0
        Thread t2 = new MyThread("2号线程");
        // t2.setName("2号线程");
        t2.start();
        System.out.println(t2.getName()); // Thread-1
        // 主线程对象的名字
        // 哪个线程执行它,它就会得到哪个线程对象。
        Thread m = Thread.currentThread();
        m.setName("最牛的线程");
        System.out.println(m.getName()); // main
        for (int i = 1; i <= 5; i++) {
            System.out.println(m.getName() + "线程输出:" + i);
        }
    }
}

执行上面代码,效果如下图所示,我们发现每一条线程都有自己了名字了。

最后再演示一下join这个方法是什么效果。

public class ThreadTest2 {
    public static void main(String[] args) throws Exception {
        // join方法作用:让当前调用这个方法的线程先执行完。
        Thread t1 = new MyThread("1号线程");
        t1.start();
        t1.join();
        Thread t2 = new MyThread("2号线程");
        t2.start();
        t2.join();
        Thread t3 = new MyThread("3号线程");
        t3.start();
        t3.join();
    }
}

执行效果是1号线程先执行完,再执行2号线程;2号线程执行完,再执行3号线程;3号线程执行完就结束了。

我们再尝试,把join()方法去掉,再看执行效果。此时你会发现2号线程没有执行完1号线程就执行了**(效果是多次运行才出现的,根据个人电脑而异,可能有同学半天也出现不了也是正常的)**

三、线程安全问题

各位小伙伴,前面我们已经学习了如何创建线程,以及线程的常用方法。接下来,我们要学习一个在实际开发过程中,使用线程时最重要的一个问题,叫线程安全问题。

3.1 线程安全问题概述

  • 首先,什么是线程安全问题呢?

线程安全问题指的是,多个线程同时操作同一个共享资源的时候,可能会出现业务安全问题。

下面通过一个取钱的案例给同学们演示一下。案例需求如下

场景:小明和小红是一对夫妻,他们有一个共享账户,余额是10万元,小红和小明同时来取钱,并且2人各自都在取钱10万元,可能出现什么问题呢?

如下图所示,小明和小红假设都是一个线程,本类每个线程都应该执行完三步操作,才算是完成的取钱的操作。但是真实执行过程可能是下面这样子的

① 小红线程只执行了判断余额是否足够(条件为true),然后CPU的执行权就被小红线程抢走了。

② 小红线程也执行了判断了余额是否足够(条件也是true), 然后CPU执行权又被小明线程抢走了。

③ 小明线程由于刚才已经判断余额是否足够了,直接执行第2步,吐出了10万元钱,此时共享账户月为0。然后CPU执行权又被小红线程抢走。

④ 小红线程由于刚刚也已经判断余额是否足够了,直接执行第2步,吐出了10万元钱,此时共享账户月为-10万。

你会发现,在这个取钱案例中,两个人把共享账户的钱都取了10万,但问题是只有10万块钱啊!!!

以上取钱案例中的问题,就是线程安全问题的一种体现。

3.2 线程安全问题的代码演示

先定义一个共享的账户类

public class Account {
    private String cardId; // 卡号
    private double money; // 余额。
    public Account() {
    }
    public Account(String cardId, double money) {
        this.cardId = cardId;
        this.money = money;
    }
    // 小明 小红同时过来的
    public void drawMoney(double money) {
        // 先搞清楚是谁来取钱?
        String name = Thread.currentThread().getName();
        // 1、判断余额是否足够
        if(this.money >= money){
            System.out.println(name + "来取钱" + money + "成功!");
            this.money -= money;
            System.out.println(name + "来取钱后,余额剩余:" + this.money);
        }else {
            System.out.println(name + "来取钱:余额不足~");
        }
    }
    public String getCardId() {
        return cardId;
    }
    public void setCardId(String cardId) {
        this.cardId = cardId;
    }
    public double getMoney() {
        return money;
    }
    public void setMoney(double money) {
        this.money = money;
    }
}

在定义一个是取钱的线程类

public class DrawThread extends Thread{
    private Account acc;
    public DrawThread(Account acc, String name){
        super(name);
        this.acc = acc;
    }
    @Override
    public void run() {
        // 取钱(小明,小红)
        acc.drawMoney(100000);
    }
}

最后,再写一个测试类,在测试类中创建两个线程对象

public class ThreadTest {
    public static void main(String[] args) {
         // 1、创建一个账户对象,代表两个人的共享账户。
        Account acc = new Account("ICBC-110", 100000);
        // 2、创建两个线程,分别代表小明 小红,再去同一个账户对象中取钱10万。
        new DrawThread(acc, "小明").start(); // 小明
        new DrawThread(acc, "小红").start(); // 小红
    }
}

运行程序,执行效果如下。你会发现两个人都取了10万块钱,余额为-10完了。

3.3 线程同步方案

为了解决前面的线程安全问题,我们可以使用线程同步思想。同步最常见的方案就是加锁,意思是每次只允许一个线程加锁,加锁后才能进入访问,访问完毕后自动释放锁,然后其他线程才能再加锁进来。

等小红线程执行完了,把余额改为0,出去了就会释放锁。这时小明线程就可以加锁进来执行,如下图所示。

采用加锁的方案,就可以解决前面两个线程都取10万块钱的问题。怎么加锁呢?Java提供了三种方案

1.同步代码块
2.同步方法
3.Lock锁

2.4 同步代码块

我们先来学习同步代码块。它的作用就是把访问共享数据的代码锁起来,以此保证线程安全。

//锁对象:必须是一个唯一的对象(同一个地址)
synchronized(锁对象){
    //...访问共享数据的代码...
}

使用同步代码块,来解决前面代码里面的线程安全问题。我们只需要修改DrawThread类中的代码即可。

// 小明 小红线程同时过来的
public void drawMoney(double money) {
    // 先搞清楚是谁来取钱?
    String name = Thread.currentThread().getName();
    // 1、判断余额是否足够
    // this正好代表共享资源!
    synchronized (this) {
        if(this.money >= money){
            System.out.println(name + "来取钱" + money + "成功!");
            this.money -= money;
            System.out.println(name + "来取钱后,余额剩余:" + this.money);
        }else {
            System.out.println(name + "来取钱:余额不足~");
        }
    }
}

此时再运行测试类,观察是否会出现不合理的情况。

最后,再给同学们说一下锁对象如何选择的问题

1.建议把共享资源作为锁对象, 不要将随便无关的对象当做锁对象
2.对于实例方法,建议使用this作为锁对象
3.对于静态方法,建议把类的字节码(类名.class)当做锁对象

2.5 同步方法

接下来,学习同步方法解决线程安全问题。其实同步方法,就是把整个方法给锁住,一个线程调用这个方法,另一个线程调用的时候就执行不了,只有等上一个线程调用结束,下一个线程调用才能继续执行。

// 同步方法
public synchronized void drawMoney(double money) {
    // 先搞清楚是谁来取钱?
    String name = Thread.currentThread().getName();
    // 1、判断余额是否足够
    if(this.money >= money){
        System.out.println(name + "来取钱" + money + "成功!");
        this.money -= money;
        System.out.println(name + "来取钱后,余额剩余:" + this.money);
    }else {
        System.out.println(name + "来取钱:余额不足~");
    }
}

改完之后,再次运行测试类,观察是否会出现不合理的情况。

接着,再问同学们一个问题,同步方法有没有锁对象?锁对象是谁?

同步方法也是有锁对象,只不过这个锁对象没有显示的写出来而已。
  1.对于实例方法,锁对象其实是this(也就是方法的调用者)
  2.对于静态方法,锁对象时类的字节码对象(类名.class)

最终,总结一下同步代码块和同步方法有什么区别?

1.不存在哪个好与不好,只是一个锁住的范围大,一个范围小
2.同步方法是将方法中所有的代码锁住
3.同步代码块是将方法中的部分代码锁住

2.6 Lock锁

接下来,我们再来学习一种,线程安全问题的解决办法,叫做Lock锁。

Lock锁是JDK5版本专门提供的一种锁对象,通过这个锁对象的方法来达到加锁,和释放锁的目的,使用起来更加灵活。格式如下

1.首先在成员变量位子,需要创建一个Lock接口的实现类对象(这个对象就是锁对象)
  private final Lock lk = new ReentrantLock();
2.在需要上锁的地方加入下面的代码
   lk.lock(); // 加锁
   //...中间是被锁住的代码...
   lk.unlock(); // 解锁

使用Lock锁改写前面DrawThread中取钱的方法,代码如下

// 创建了一个锁对象
private final Lock lk = new ReentrantLock();
public void drawMoney(double money) {
        // 先搞清楚是谁来取钱?
        String name = Thread.currentThread().getName();
        try {
            lk.lock(); // 加锁
            // 1、判断余额是否足够
            if(this.money >= money){
                System.out.println(name + "来取钱" + money + "成功!");
                this.money -= money;
                System.out.println(name + "来取钱后,余额剩余:" + this.money);
            }else {
                System.out.println(name + "来取钱:余额不足~");
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lk.unlock(); // 解锁
        }
    }
}

运行程序结果,观察是否有线程安全问题。到此三种解决线程安全问题的办法我们就学习完了。

四、线程通信(了解)

接下来,我们学习一下线程通信。

首先,什么是线程通信呢?

  • 当多个线程共同操作共享资源时,线程间通过某种方式互相告知自己的状态,以相互协调,避免无效的资源挣抢。

线程通信的常见模式:是生产者与消费者模型

  • 生产者线程负责生成数据
  • 消费者线程负责消费生产者生成的数据
  • 注意:生产者生产完数据后应该让自己等待,通知其他消费者消费;消费者消费完数据之后应该让自己等待,同时通知生产者生成。

比如下面案例中,有3个厨师(生产者线程),两个顾客(消费者线程)。

接下来,我们先分析一下完成这个案例的思路

1.先确定在这个案例中,什么是共享数据?
  答:这里案例中桌子是共享数据,因为厨师和顾客都需要对桌子上的包子进行操作。
2.再确定有那几条线程?哪个是生产者,哪个是消费者?
  答:厨师是生产者线程,3条生产者线程; 
     顾客是消费者线程,2条消费者线程
3.什么时候将哪一个线程设置为什么状态
  生产者线程(厨师)放包子:
     1)先判断是否有包子
     2)没有包子时,厨师开始做包子, 做完之后把别人唤醒,然后让自己等待
     3)有包子时,不做包子了,直接唤醒别人、然后让自己等待
  消费者线程(顾客)吃包子:
     1)先判断是否有包子
     2)有包子时,顾客开始吃包子, 吃完之后把别人唤醒,然后让自己等待
     3)没有包子时,不吃包子了,直接唤醒别人、然后让自己等待

按照上面分析的思路写代码。先写桌子类,代码如下

public class Desk {
    private List<String> list = new ArrayList<>();
    // 放1个包子的方法
    // 厨师1 厨师2 厨师3
    public synchronized void put() {
        try {
            String name = Thread.currentThread().getName();
            // 判断是否有包子。
            if(list.size() == 0){
                list.add(name + "做的肉包子");
                System.out.println(name + "做了一个肉包子~~");
                Thread.sleep(2000);
                // 唤醒别人, 等待自己
                this.notifyAll();
                this.wait();
            }else {
                // 有包子了,不做了。
                // 唤醒别人, 等待自己
                this.notifyAll();
                this.wait();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    // 吃货1 吃货2
    public synchronized void get() {
        try {
            String name = Thread.currentThread().getName();
            if(list.size() == 1){
                // 有包子,吃了
                System.out.println(name  + "吃了:" + list.get(0));
                list.clear();
                Thread.sleep(1000);
                this.notifyAll();
                this.wait();
            }else {
                // 没有包子
                this.notifyAll();
                this.wait();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

再写测试类,在测试类中,创建3个厨师线程对象,再创建2个顾客对象,并启动所有线程

public class ThreadTest {
    public static void main(String[] args) {
        //   需求:3个生产者线程,负责生产包子,每个线程每次只能生产1个包子放在桌子上
        //      2个消费者线程负责吃包子,每人每次只能从桌子上拿1个包子吃。
        Desk desk  = new Desk();
        // 创建3个生产者线程(3个厨师)
        new Thread(() -> {
            while (true) {
                desk.put();
            }
        }, "厨师1").start();
        new Thread(() -> {
            while (true) {
                desk.put();
            }
        }, "厨师2").start();
        new Thread(() -> {
            while (true) {
                desk.put();
            }
        }, "厨师3").start();
        // 创建2个消费者线程(2个吃货)
        new Thread(() -> {
            while (true) {
                desk.get();
            }
        }, "吃货1").start();
        new Thread(() -> {
            while (true) {
                desk.get();
            }
        }, "吃货2").start();
    }
}

执行上面代码,运行结果如下:你会发现多个线程相互协调执行,避免无效的资源挣抢。

厨师1做了一个肉包子~~
吃货2吃了:厨师1做的肉包子
厨师3做了一个肉包子~~
吃货2吃了:厨师3做的肉包子
厨师1做了一个肉包子~~
吃货1吃了:厨师1做的肉包子
厨师2做了一个肉包子~~
吃货2吃了:厨师2做的肉包子
厨师3做了一个肉包子~~
吃货1吃了:厨师3做的肉包子

五、线程池

5.1 线程池概述

各位小伙伴,接下来我们学习一下线程池技术。先认识一下什么是线程池技术? 其实,线程池就是一个可以复用线程的技术

要理解什么是线程复用技术,我们先得看一下不使用线程池会有什么问题,理解了这些问题之后,我们在解释线程复用同学们就好理解了。

假设:用户每次发起一个请求给后台,后台就创建一个新的线程来处理,下次新的任务过来肯定也会创建新的线程,如果用户量非常大,创建的线程也讲越来越多。然而,创建线程是开销很大的,并且请求过多时,会严重影响系统性能。

而使用线程池,就可以解决上面的问题。如下图所示,线程池内部会有一个容器,存储几个核心线程,假设有3个核心线程,这3个核心线程可以处理3个任务。

但是任务总有被执行完的时候,假设第1个线程的任务执行完了,那么第1个线程就空闲下来了,有新的任务时,空闲下来的第1个线程可以去执行其他任务。依此内推,这3个线程可以不断的复用,也可以执行很多个任务。

所以,线程池就是一个线程复用技术,它可以提高线程的利用率。

5.2 创建线程池

在JDK5版本中提供了代表线程池的接口ExecutorService,而这个接口下有一个实现类叫ThreadPoolExecutor类,使用ThreadPoolExecutor类就可以用来创建线程池对象。

下面是它的构造器,参数比较多,不要怕,干就完了_

接下来,用这7个参数的构造器来创建线程池的对象。代码如下

ExecutorService pool = new ThreadPoolExecutor(
    3,  //核心线程数有3个
    5,  //最大线程数有5个。   临时线程数=最大线程数-核心线程数=5-3=2
    8,  //临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
    TimeUnit.SECONDS,//时间单位(秒)
    new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在,任务队列中等待
    Executors.defaultThreadFactory(), //用于创建线程的工厂对象
    new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);

关于线程池,我们需要注意下面的两个问题

  • 临时线程什么时候创建?
新任务提交时,发现核心线程都在忙、任务队列满了、并且还可以创建临时线程,此时会创建临时线程。
  • 什么时候开始拒绝新的任务?
核心线程和临时线程都在忙、任务队列也满了、新任务过来时才会开始拒绝任务。

5.3 线程池执行Runnable任务

创建好线程池之后,接下来我们就可以使用线程池执行任务了。线程池执行的任务可以有两种,一种是Runnable任务;一种是callable任务。下面的execute方法可以用来执行Runnable任务。

先准备一个线程任务类

public class MyRunnable implements Runnable{
    @Override
    public void run() {
        // 任务是干啥的?
        System.out.println(Thread.currentThread().getName() + " ==> 输出666~~");
        //为了模拟线程一直在执行,这里睡久一点
        try {
            Thread.sleep(Integer.MAX_VALUE);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

下面是执行Runnable任务的代码,注意阅读注释,对照着前面的7个参数理解。

ExecutorService pool = new ThreadPoolExecutor(
    3,  //核心线程数有3个
    5,  //最大线程数有5个。   临时线程数=最大线程数-核心线程数=5-3=2
    8,  //临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
    TimeUnit.SECONDS,//时间单位(秒)
    new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在,任务队列中等待
    Executors.defaultThreadFactory(), //用于创建线程的工厂对象
    new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);
Runnable target = new MyRunnable();
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
//下面4个任务在任务队列里排队
pool.execute(target);
pool.execute(target);
pool.execute(target);
pool.execute(target);
//下面2个任务,会被临时线程的创建时机了
pool.execute(target);
pool.execute(target);
// 到了新任务的拒绝时机了!
pool.execute(target);

执行上面的代码,结果输出如下

5.4 线程池执行Callable任务

接下来,我们学习使用线程池执行Callable任务。callable任务相对于Runnable任务来说,就是多了一个返回值。

执行Callable任务需要用到下面的submit方法

先准备一个Callable线程任务

public class MyCallable implements Callable<String> {
    private int n;
    public MyCallable(int n) {
        this.n = n;
    }
    // 2、重写call方法
    @Override
    public String call() throws Exception {
        // 描述线程的任务,返回线程执行返回后的结果。
        // 需求:求1-n的和返回。
        int sum = 0;
        for (int i = 1; i <= n; i++) {
            sum += i;
        }
        return Thread.currentThread().getName() + "求出了1-" + n + "的和是:" + sum;
    }
}

再准备一个测试类,在测试类中创建线程池,并执行callable任务。

public class ThreadPoolTest2 {
    public static void main(String[] args) throws Exception {
        // 1、通过ThreadPoolExecutor创建一个线程池对象。
        ExecutorService pool = new ThreadPoolExecutor(
            3,
            5,
            8,
            TimeUnit.SECONDS, 
            new ArrayBlockingQueue<>(4),
            Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.CallerRunsPolicy());
        // 2、使用线程处理Callable任务。
        Future<String> f1 = pool.submit(new MyCallable(100));
        Future<String> f2 = pool.submit(new MyCallable(200));
        Future<String> f3 = pool.submit(new MyCallable(300));
        Future<String> f4 = pool.submit(new MyCallable(400));
        // 3、执行完Callable任务后,需要获取返回结果。
        System.out.println(f1.get());
        System.out.println(f2.get());
        System.out.println(f3.get());
        System.out.println(f4.get());
    }
}

执行后,结果如下图所示

5.5 线程池工具类(Executors)

有同学可能会觉得前面创建线程池的代码参数太多、记不住,有没有快捷的创建线程池的方法呢?有的。Java为开发者提供了一个创建线程池的工具类,叫做Executors,它提供了方法可以创建各种不能特点的线程池。如下图所示

接下来,我们演示一下创建固定线程数量的线程池。这几个方法用得不多,所以这里不做过多演示,同学们了解一下就行了。

public class ThreadPoolTest3 {
    public static void main(String[] args) throws Exception {
        // 1、通过Executors创建一个线程池对象。
        ExecutorService pool = Executors.newFixedThreadPool(17);
        // 老师:核心线程数量到底配置多少呢???
        // 计算密集型的任务:核心线程数量 = CPU的核数 + 1
        // IO密集型的任务:核心线程数量 = CPU核数 * 2
        // 2、使用线程处理Callable任务。
        Future<String> f1 = pool.submit(new MyCallable(100));
        Future<String> f2 = pool.submit(new MyCallable(200));
        Future<String> f3 = pool.submit(new MyCallable(300));
        Future<String> f4 = pool.submit(new MyCallable(400));
        System.out.println(f1.get());
        System.out.println(f2.get());
        System.out.println(f3.get());
        System.out.println(f4.get());
    }
}

Executors创建线程池这么好用,为什么不推荐同学们使用呢?原因在这里:看下图,这是《阿里巴巴Java开发手册》提供的强制规范要求。

六、补充知识

最后,我们再补充几个概念性的知识点,同学们知道这些概念什么意思就可以了。

6.1 并发和并行

先学习第一个补充知识点,并发和并行。在讲解并发和并行的含义之前,我们先来了解一下什么是进程、线程?

  • 正常运行的程序(软件)就是一个独立的进程
  • 线程是属于进程,一个进程中包含多个线程
  • 进程中的线程其实并发和并行同时存在(继续往下看)

我们可以打开系统的任务管理器看看(快捷键:Ctrl+Shfit+Esc),自己的电脑上目前有哪些进程。

知道了什么是进程和线程之后,接着我们再来学习并发和并行的含义。

首先,来学习一下什么是并发?

进程中的线程由CPU负责调度执行,但是CPU同时处理线程的数量是优先的,为了保证全部线程都能执行到,CPU采用轮询机制为系统的每个线程服务,由于CPU切换的速度很快,给我们的感觉这些线程在同时执行,这就是并发。(简单记:并发就是多条线程交替执行)

接下,再来学习一下什么是并行?

并行指的是,多个线程同时被CPU调度执行。如下图所示,多个CPU核心在执行多条线程

最后一个问题,多线程到底是并发还是并行呢?

其实多个线程在我们的电脑上执行,并发和并行是同时存在的。

相关文章
|
1天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
1天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
7 3
|
1天前
|
Java
java小知识—进程和线程
进程 进程是程序的一次执行过程,是系统运行的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如CPU时间,内存空间,文件,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程 线程,与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中产生多个线程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程,或是在各个线程之间做切换工作时,负担要比
6 1
|
1天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
2天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
18 1
|
Java
Java多线程编程核心技术(三)多线程通信(下篇)
线程是操作系统中独立的个体,但这些个体如果不经过特殊的处理就不能成为一个整体。线程间的通信就是成为整体的必用方案之一,可以说,使线程间进行通信后,系统之间的交互性会更强大,在大大提高CPU利用率的同时还会使程序员对各线程任务在处理的过程中进行有效的把控与监督。
684 0
|
Java
Java多线程编程核心技术(三)多线程通信(上篇)
线程是操作系统中独立的个体,但这些个体如果不经过特殊的处理就不能成为一个整体。线程间的通信就是成为整体的必用方案之一,可以说,使线程间进行通信后,系统之间的交互性会更强大,在大大提高CPU利用率的同时还会使程序员对各线程任务在处理的过程中进行有效的把控与监督。
2560 0
|
Java 安全
Java多线程编程核心技术(二)volatile关键字
关键字volatile的主要作用是使变量在多个线程间可见。
882 0
|
Java
Java多线程编程核心技术(一)Java多线程技能
本文为《Java并发编程系列》第一章,主要介绍并发基础概念与API
2440 0
|
Java
<Java多线程编程核心技术>讲解得太细致啦
一个synchronized关键字,能讲一百多页,搞出几十个小举例。 我是服了!
2232 0
下一篇
无影云桌面