spinbox微调器

简介: spinbox微调器
import tkinter as tk

root = tk.Tk()
root.title("逻辑峰")
root.geometry('300x200+300+300')
root.iconbitmap('../image/icon.ico')
# 如果是数字使用 from_和to参数,范围 0-20,并且与2步长递增或递减
w = tk.Spinbox(root, from_=0, to=20, increment=2, width=15, bg='#9BCD9B')
w.pack()
# 显示窗口
root.mainloop()
目录
相关文章
|
7月前
|
机器学习/深度学习 算法 测试技术
使用ORPO微调Llama 3
ORPO是一种结合监督微调和偏好对齐的新型微调技术,旨在减少训练大型语言模型所需资源和时间。通过在一个综合训练过程中结合这两种方法,ORPO优化了语言模型的目标,强化了对首选响应的奖励,弱化对不期望回答的惩罚。实验证明ORPO在不同模型和基准上优于其他对齐方法。本文使用Llama 3 8b模型测试ORPO,结果显示即使只微调1000条数据一个epoch,性能也有所提升,证实了ORPO的有效性。完整代码和更多细节可在相关链接中找到。
368 10
|
7月前
|
机器学习/深度学习 自然语言处理 算法
预训练语言模型是什么?
【2月更文挑战第13天】预训练语言模型是什么?
79 2
预训练语言模型是什么?
|
7月前
|
机器学习/深度学习 自然语言处理
大语言模型(LLM)框架及微调 (Fine Tuning)
大语言模型(LLM)框架及微调 (Fine Tuning)
507 0
|
人工智能 搜索推荐 物联网
如何训练个人的Gpt4ALL
如何训练个人的Gpt4ALL
3551 0
如何训练个人的Gpt4ALL
|
4天前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
50 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
4月前
|
机器学习/深度学习 存储 人工智能
2024年大语言模型的微调
2024年大语言模型的微调
89 1
2024年大语言模型的微调
|
1月前
|
机器学习/深度学习 自然语言处理
|
2月前
|
机器学习/深度学习 弹性计算 人工智能
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
465 6
|
3月前
|
机器学习/深度学习 缓存 自然语言处理
一文揭秘|预训练一个72b模型需要多久?
本文讲述评估和量化训练大规模语言模型,尤其是Qwen2-72B模型,所需的时间、资源和计算能力。
171 12
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
微调大语言模型知识
在自然语言处理领域,大语言模型(Large Language Models, LLMs)展示了卓越的能力。了解这些模型的特点及微调方法可以帮助更好地应用它们。
46 5