Linux内核 RPS/RFS功能详细测试分析

简介: Linux内核 RPS/RFS功能详细测试分析

RPS和RFS

  • RPS 全称是 Receive Packet Steering, 这是Google工程师 Tom Herbert (therbert@google.com )提交的内核补丁, 在2.6.35进入Linux内核. 这个patch采用软件模拟的方式,实现了多队列网卡所提供的功能,分散了在多CPU系统上数据接收时的负载, 把软中断分到各个CPU处理,而不需要硬件支持,大大提高了网络性能。
  • RFS 全称是 Receive Flow Steering, 这也是Tom提交的内核补丁,它是用来配合RPS补丁使用的,是RPS补丁的扩展补丁,它把接收的数据包送达应用所在的CPU上,提高cache的命中率。
  • 这两个补丁往往都是一起设置,来达到最好的优化效果, 主要是针对单队列网卡多CPU环境(多队列多重中断的网卡也可以使用该补丁的功能,但多队列多重中断网卡有更好的选择:SMP IRQ affinity)

原理

RPS: RPS实现了数据流的hash归类,并把软中断的负载均衡分到各个cpu,实现了类似多队列网卡的功能。由于RPS只是单纯的把同一流的数据包分发给同一个CPU核来处理了,但是有可能出现这样的情况,即给该数据流分发的CPU核和执行处理该数据流的应用程序的CPU核不是同一个:数据包均衡到不同的cpu,这个时候如果应用程序所在的cpu和软中断处理的cpu不是同一个,此时对于cpu cache的影响会很大。那么RFS补丁就是用来确保应用程序处理的cpu跟软中断处理的cpu是同一个,这样就充分利用cpu的cache。

  • 应用RPS之前: 所有数据流被分到某个CPU, 多CPU没有被合理利用, 造成瓶颈
  • 应用RPS之后: 同一流的数据包被分到同个CPU核来处理,但可能出现cpu cache迁跃
  • 应用RPS+RFS之后: 同一流的数据包被分到应用所在的CPU核必要条件使用RPS和RFS功能,需要有大于等于2.6.35版本的Linux kernel.如何判断内核版本?
$ uname -r
.6.38-2-686-bigmem
  • 对比测试
类别 测试客户端 测试服务端
型号 BladeCenter HS23p BladeCenter HS23p
CPU Xeon E5-2609 Xeon E5-2630
网卡 Broadcom NetXtreme II BCM5709S Gigabit Ethernet Emulex Corporation OneConnect 10Gb NIC
内核 3.2.0-2-amd64 3.2.0-2-amd64
内存 62GB 66GB
系统 Debian 6.0.4 Debian 6.0.5
超线程
CPU核 4 6
驱动 bnx2 be2net
  • 客户端: netperf
  • 服务端: netserver
  • RPS cpu bitmap测试分类: 0(不开启rps功能), one cpu per queue(每队列绑定到1个CPU核上), all cpus per queue(每队列绑定到所有cpu核上), 不同分类的设置值如下
  1. 0(不开启rps功能)
/sys/class/net/eth0/queues/rx-0/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-1/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-2/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-3/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-4/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-5/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-6/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-7/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-0/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-1/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-2/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-3/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-4/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-5/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-6/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-7/rps_flow_cnt 0
/proc/sys/net/core/rps_sock_flow_entries 0
  1. one cpu per queue(每队列绑定到1个CPU核上)
/sys/class/net/eth0/queues/rx-0/rps_cpus 00000001
/sys/class/net/eth0/queues/rx-1/rps_cpus 00000002
/sys/class/net/eth0/queues/rx-2/rps_cpus 00000004
/sys/class/net/eth0/queues/rx-3/rps_cpus 00000008
/sys/class/net/eth0/queues/rx-4/rps_cpus 00000010
/sys/class/net/eth0/queues/rx-5/rps_cpus 00000020
/sys/class/net/eth0/queues/rx-6/rps_cpus 00000040
/sys/class/net/eth0/queues/rx-7/rps_cpus 00000080
/sys/class/net/eth0/queues/rx-0/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-1/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-2/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-3/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-4/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-5/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-6/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-7/rps_flow_cnt 4096
/proc/sys/net/core/rps_sock_flow_entries 32768
  1. all cpus per queue(每队列绑定到所有cpu核上)
/sys/class/net/eth0/queues/rx-0/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-1/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-2/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-3/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-4/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-5/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-6/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-7/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-0/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-1/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-2/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-3/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-4/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-5/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-6/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-7/rps_flow_cnt 4096
/proc/sys/net/core/rps_sock_flow_entries 32768
  • 测试方法: 每种测试类型执行3次,中间睡眠10秒, 每种测试类型分别执行100、500、1500个实例, 每实例测试时间长度为60秒
  • TCP_RR 1 byte: 测试TCP 小数据包 request/response的性能
netperf -t TCP_RR -H $serverip -c -C -l 60
  • UDP_RR 1 byte: 测试UDP 小数据包 request/response的性能
netperf -t UDP_RR -H $serverip -c -C -l 60
  • TCP_RR 256 byte: 测试TCP 大数据包 request/response的性能
netperf -t TCP_RR -H $serverip -c -C -l 60 -- -r256,256
  • UDP_RR 256 byte: 测试UDP 大数据包 request/response的性能
netperf -t UDP_RR -H $serverip -c -C -l 60 -- -r256,256
  • TPS测试结果
  • TCP_RR 1 byte小包测试结果
  • TCP_RR 256 byte大包测试结果
  • UDP_RR 1 byte小包测试结果
  • UDP_RR 256 byte大包测试结果
  • CPU负载变化
    在测试过程中,使用mpstat收集各个CPU核的负载变化
  1. 关闭RPS/RFS: 可以看出关闭RPS/RFS时,软中断的负载都在cpu0上,并没有有效的利用多CPU的特性,导致了性能瓶颈
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    3.65    0.00   35.75    0.05    0.01   14.56    0.00    0.00   45.98
Average:       0    0.00    0.00    0.00    0.00    0.00  100.00    0.00    0.00    0.00
Average:       1    4.43    0.00   37.76    0.00    0.11   11.49    0.00    0.00   46.20
Average:       2    5.01    0.00   45.80    0.00    0.00    0.00    0.00    0.00   49.19
Average:       3    5.11    0.00   45.07    0.00    0.00    0.00    0.00    0.00   49.82
Average:       4    3.52    0.00   40.38    0.14    0.00    0.00    0.00    0.00   55.96
Average:       5    3.85    0.00   39.91    0.00    0.00    0.00    0.00    0.00   56.24
Average:       6    3.62    0.00   40.48    0.14    0.00    0.00    0.00    0.00   55.76
Average:       7    3.87    0.00   38.86    0.11    0.00    0.00    0.00    0.00   57.16
  1. 每队列关联到一个CPU TCP_RR: 可以看出软中断负载已经能分散到各个CPU核上,有效利用了多CPU的特性,大大提高了系统的网络性能
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    5.58    0.00   59.84    0.01    0.00   22.71    0.00    0.00   11.86
Average:       0    2.16    0.00   20.85    0.00    0.04   72.03    0.00    0.00    4.93
Average:       1    4.68    0.00   46.27    0.00    0.00   42.73    0.00    0.00    6.32
Average:       2    6.76    0.00   63.79    0.00    0.00   11.03    0.00    0.00   18.42
Average:       3    6.61    0.00   65.71    0.00    0.00   11.51    0.00    0.00   16.17
Average:       4    5.94    0.00   67.83    0.07    0.00   11.59    0.00    0.00   14.58
Average:       5    5.99    0.00   69.42    0.04    0.00   12.54    0.00    0.00   12.01
Average:       6    5.94    0.00   69.41    0.00    0.00   12.86    0.00    0.00   11.78
Average:       7    6.13    0.00   69.61    0.00    0.00   14.48    0.00    0.00    9.77
  1. 每队列关联到一个CPU UDP_RR: CPU负载未能均衡的分布到各个CPU, 这是由于网卡hash计算在UDP包上的不足, 详细请见本文后记部分
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    3.01    0.00   29.84    0.07    0.01   13.35    0.00    0.00   53.71
Average:       0    0.00    0.00    0.08    0.00    0.00   90.01    0.00    0.00    9.91
Average:       1    3.82    0.00   32.87    0.00    0.05   12.81    0.00    0.00   50.46
Average:       2    4.84    0.00   37.53    0.00    0.00    0.14    0.00    0.00   57.49
Average:       3    4.90    0.00   37.92    0.00    0.00    0.16    0.00    0.00   57.02
Average:       4    2.57    0.00   32.72    0.20    0.00    0.09    0.00    0.00   64.42
Average:       5    2.66    0.00   33.54    0.11    0.00    0.08    0.00    0.00   63.60
Average:       6    2.75    0.00   32.81    0.09    0.00    0.06    0.00    0.00   64.30
Average:       7    2.71    0.00   32.66    0.17    0.00    0.06    0.00    0.00   64.40
  1. 每队列关联到所有CPU: 可以看出软中断负载已经能分散到各个CPU核上,有效利用了多CPU的特性,大大提高了系统的网络性能
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    5.39    0.00   59.97    0.00    0.00   22.57    0.00    0.00   12.06
Average:       0    1.46    0.00   21.83    0.04    0.00   72.08    0.00    0.00    4.59
Average:       1    4.45    0.00   46.40    0.00    0.04   43.39    0.00    0.00    5.72
Average:       2    6.84    0.00   65.62    0.00    0.00   11.39    0.00    0.00   16.15
Average:       3    6.71    0.00   67.13    0.00    0.00   12.07    0.00    0.00   14.09
Average:       4    5.73    0.00   66.97    0.00    0.00   10.71    0.00    0.00   16.58
Average:       5    5.74    0.00   68.57    0.00    0.00   13.02    0.00    0.00   12.67
Average:       6    5.79    0.00   69.27    0.00    0.00   12.31    0.00    0.00   12.63
Average:       7    5.96    0.00   68.98    0.00    0.00   12.00    0.00    0.00   13.06
  • 结果分析
    以下结果只是针对测试服务器特定硬件及系统的数据,在不同测试对象的RPS/RFS测试结果可能有不同的表现
    TCP性能:
  • 在没有打开RPS/RFS的情况下,随着进程数的增加,TCP tps性能并明显没有提升,在184~188k之间。
  • 打开RPS/RFS之后,随着RPS导致软中断被分配到所有CPU上和RFS增加的cache命中, 小数据包(1字节)及大数据包(256字节,相对小数据包而言, 而不是实际应用中的大数据包)的tps性能都有显著提升
  • 100个进程提升40%的性能(两种RPS/RFS设置的性能结果一致), cpu负载升高40%
  • 500个进程提升70%的性能(两种RPS/RFS设置的性能结果一致), cpu负载升高62%
  • 1500个进程提升75%的性能(两种RPS/RFS设置的性能结果一致), cpu负载升高77%
  • UDP性能:
  • 在没有打开RPS/RFS的情况下,随着进程数的增加,UDP tps性能并明显没有提升,在226~235k之间。
  • 打开RPS/RFS之后,,随着RPS导致软中断被分配到所有CPU上和RFS增加的cache命中, 小数据包(1字节)及大数据包(256字节,相对小数据包而言, 而不是实际应用中的大数据包)的TPS性能, 在每队列关联到所有CPU的情况下有显著提升, 而每队列关联到一个CPU后反倒是导致了UDP tps性能下降1% (这是bnx2网卡不支持UDP port hash及此次测试的局限性造成的结果, 详细分析见: 后记)
  • 每队列关联到所有CPU的情况下, 在100个进程时小包提升40%的性能, cpu负载升高60%; 大包提升33%, cpu负载升高47%
  • 每队列关联到所有CPU的情况下, 在500个进程提小包提升62%的性能, cpu负载升高71%; 大包提升60%, cpu负载升高65%
  • 每队列关联到所有CPU的情况下, 在1500个进程提升65%的性能, cpu负载升高75%; 大包提升64%, cpu负载升高74%
  • 后记
    UDP在每队列绑定到一个CPU时性能下降,而绑定到所有CPU时,却有性能提升,这一问题涉及到几个因素,当这几个因素凑一起时,导致了这种奇特的表现。
  • 此次测试的局限性:本次测试是1对1的网络测试,产生的数据包的IP地址都是相同的
  • bnx2网卡在RSS hash上,不支持UDP Port,也就是说,网卡在对TCP数据流进行队列选择时的hash包含了ip和port, 而在UDP上的hash, 只有IP地址,导致了本次测试(上面的局限性影响)的UDP数据包的hash结果都是一样的,数据包被转送到同一条队列。
  • 单单上面两个因素,还无法表现出UDP在每队列绑定到一个CPU时性能下降,而绑定到所有CPU时,却有性能提升的现象。 因为RPS/RFS本身也有hash计算,也就是进入队列后的数据包,还需要经过RPS/RFS的hash计算(这里的hash支持udp port), 然后进行第二次数据包转送选择;如果每队列绑定到一个CPU, 系统直接跳过第二次hash计算,数据包直接分配到该队列关联的CPU处理,也就导致了在第一次hash计算后被错误转送到某一队列的UDP数据包,将直接送到cpu处理,导致了性能的下降; 而如果是每队列绑定到所有CPU, 那么进入队列后的数据包会在第二次hash时被重新分配,修正了第一次hash的错误选择。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3天前
|
安全 算法 网络协议
探索Linux操作系统的内核管理
【5月更文挑战第31天】本文将深入探讨Linux操作系统的内核管理机制,包括其设计原则、主要组件以及它们如何协同工作以提供高效的系统性能。通过分析Linux内核的关键特性和功能,我们将揭示这一开源操作系统如何在各种计算环境中保持其稳定性和灵活性。
|
4天前
|
机器学习/深度学习 人工智能 负载均衡
深度解析:Linux内核调度策略的演变与优化
【5月更文挑战第30天】 随着计算技术的不断进步,操作系统的性能调优成为了提升计算机系统效率的关键。在众多操作系统中,Linux因其开源和高度可定制性而备受青睐。本文将深入剖析Linux操作系统的内核调度策略,追溯其历史演变过程,并重点探讨近年来为适应多核处理器和实时性要求而产生的调度策略优化。通过分析比较不同的调度算法,如CFS(完全公平调度器)、实时调度类和批处理作业的调度需求,本文旨在为系统管理员和开发者提供对Linux调度机制深层次理解,同时指出未来可能的发展趋势。
|
3天前
|
机器学习/深度学习 敏捷开发 人工智能
深入分析自动化测试中的挑战与机遇
【5月更文挑战第31天】 在软件开发的不断进步和迭代中,自动化测试作为提升效率、确保质量的重要手段,其地位愈发凸显。本文将深入探讨实施自动化测试过程中遭遇的技术挑战,如维护成本、复杂场景模拟等,并剖析其中的机遇,包括持续集成的协同优势和最新的AI辅助技术。通过具体案例分析和前沿技术趋势预测,旨在为软件测试工程师提供全面的视角,以应对未来自动化测试的发展需求。
|
3天前
|
监控 jenkins 测试技术
提升软件测试效率与准确性的策略分析
【5月更文挑战第31天】 在软件开发生命周期中,测试工作占据了举足轻重的地位。本文旨在探讨提高软件测试效率和准确性的有效策略。通过对自动化测试工具的选择、测试用例的优化设计、持续集成系统的整合以及性能测试的关键指标分析,本文提出了一系列创新的方法和实践建议。这些策略不仅能够减少人力资源消耗,还能显著提高软件产品的质量和稳定性。
|
4天前
|
监控 测试技术
深入分析软件测试中的风险评估与管理
【5月更文挑战第30天】 在软件开发生命周期中,风险无处不在,特别是在软件测试阶段。本文旨在探讨软件测试过程中如何有效地进行风险评估和管理,以确保软件质量和项目成功。文中将介绍风险评估的基本概念,提出一个结构化的风险识别和评估框架,并详细讨论如何通过定性和定量方法来管理测试风险。此外,文章还将展示一个案例研究,以说明所提策略在实际中的应用效果。
|
4天前
|
Linux
探索Linux操作系统的内核模块
本文将深入探讨Linux操作系统的核心组成部分——内核模块,揭示其背后的工作机制和实现方式。我们将从内核模块的定义开始,逐步解析其加载、卸载以及与操作系统其他部分的交互过程,最后探讨内核模块在系统性能优化中的关键作用。
|
5天前
|
机器学习/深度学习 人工智能 测试技术
深入探究软件测试中的自动化边界值分析
【5月更文挑战第29天】随着软件开发的复杂性增加,确保产品质量的需求促使自动化测试成为核心实践。本文专注于自动化边界值分析的应用与效能,探讨其在提高测试效率和有效性方面的关键作用。通过引入先进的自动化工具和技术,文章揭示了如何优化测试用例设计,减少重复劳动,同时保持高水平的错误检测率。本研究不仅展示了自动化边界值分析在不同类型的软件测试场景中的应用,还讨论了实施过程中可能遇到的挑战及其解决方案。
|
5天前
|
缓存 算法 安全
探索Linux内核的虚拟内存管理
【5月更文挑战第29天】 在现代操作系统中,虚拟内存是支持多任务处理和内存保护的关键组件。本文深入分析了Linux操作系统中的虚拟内存管理机制,包括其地址空间布局、分页系统以及内存分配策略。我们将探讨虚拟内存如何允许多个进程独立地访问它们自己的地址空间,同时由操作系统管理物理内存资源。此外,文章还将涉及虚拟内存所带来的性能影响及其优化方法。
|
5天前
|
测试技术 程序员
深入理解与应用软件测试中的边界值分析法
【5月更文挑战第29天】 在软件测试领域,边界值分析是一种高效的测试设计技术,它依据边缘情况往往更易暴露程序缺陷的假设。本文将深入探讨边界值分析法的原理、实施步骤以及在实际测试中的应用。通过分析边界条件对测试覆盖的影响,我们展示了如何运用边界值分析提高测试用例的有效性,并结合案例说明其在不同类型的软件测试中如何具体实施。
|
5天前
|
算法 Linux 调度
深度解析:Linux内核的进程调度机制
【5月更文挑战第29天】 在现代操作系统中,尤其是类Unix系统如Linux中,进程调度机制是保证多任务高效运行的核心。本文将深入探讨Linux操作系统内核的进程调度器——负责管理CPU资源分配的关键组件。我们会详细分析其调度策略、调度器的演进及其在多核处理器环境下的表现。通过剖析进程调度器的工作原理和设计哲学,旨在为读者提供一个清晰的视角来理解这一复杂的系统功能。
12 0