87 python高级 - 闭包

简介: 87 python高级 - 闭包

1. 函数引用

def test1():
    print("--- in test1 func----")
#调用函数
test1()
#引用函数
ret = test1
print(id(ret))
print(id(test1))
#通过引用调用函数
ret()

运行结果:

--- in test1 func----
140212571149040
140212571149040
--- in test1 func----

2. 什么是闭包

#定义一个函数
def test(number):
    #在函数内部再定义一个函数,并且这个函数用到了外边函数的变量,那么将这个函数以及用到的一些变量称之为闭包
    def test_in(number_in):
        print("in test_in 函数, number_in is %d"%number_in)
        return number+number_in
    #其实这里返回的就是闭包的结果
    return test_in
#给test函数赋值,这个20就是给参数number
ret = test(20)
#注意这里的100其实给参数number_in
print(ret(100))
#注意这里的200其实给参数number_in
print(ret(200))

运行结果:

in test_in 函数, number_in is 100
120
in test_in 函数, number_in is 200
220

3. 闭包再理解

内部函数对外部函数作用域里变量的引用(非全局变量),则称内部函数为闭包。

# closure.py
def counter(start=0):
    count=[start]
    def incr():
        count[0] += 1
        return count[0]
    return incr

启动python解释器

>>>import closeure
>>>c1=closeure.counter(5)
>>>print(c1())
6
>>>print(c1())
7
>>>c2=closeure.counter(100)
>>>print(c2())
101
>>>print(c2())
102

nonlocal访问外部函数的局部变量(python3)

def counter(start=0):
    def incr():
        nonlocal start
        start += 1
        return start
    return incr
c1 = counter(5)
print(c1())
print(c1())
c2 = counter(50)
print(c2())
print(c2())
print(c1())
print(c1())
print(c2())
print(c2())

4. 看一个闭包的实际例子:

def line_conf(a, b):
    def line(x):
        return a*x + b
    return line
line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5))
print(line2(5))

这个例子中,函数line与变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。

如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。

闭包思考:

1.闭包似优化了变量,原来需要类对象完成的工作,闭包也可以完成
2.由于闭包引用了外部函数的局部变量,则外部函数的局部变量没有及时释放,消耗内存

目录
相关文章
|
存储 缓存 算法
Python闭包|你应该知道的常见用例(下)
Python闭包|你应该知道的常见用例(下)
Python闭包|你应该知道的常见用例(下)
|
自然语言处理 小程序 测试技术
Python闭包|你应该知道的常见用例(上)
Python闭包|你应该知道的常见用例(上)
Python闭包|你应该知道的常见用例(上)
|
11月前
|
Python
闭包(Closure)是**Python中的一种高级特性
闭包(Closure)是**Python中的一种高级特性
160 8
|
Python
深入理解Python中的闭包
深入理解Python中的闭包
153 0
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
数据采集 Java C语言
Python面向对象的高级动态可解释型脚本语言简介
Python是一种面向对象的高级动态可解释型脚本语言。
184 3
|
机器学习/深度学习 数据采集 人工智能
Python 是一种广泛使用的高级编程语言
【7月更文挑战第17天】Python 是一种广泛使用的高级编程语言
507 2
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
183 1
|
存储 算法 调度
惊呆了!Python高级数据结构堆与优先队列,竟然能这样优化你的程序性能!
【7月更文挑战第10天】Python的heapq模块实现了堆和优先队列,提供heappush和heappop等函数,支持O(log n)时间复杂度的操作。优先队列常用于任务调度和图算法,优化性能。例如,Dijkstra算法利用最小堆加速路径查找。堆通过列表存储,内存效率高。示例展示了添加、弹出和自定义优先级元素。使用堆优化程序,提升效率。
199 2
|
算法 调度 Python
Python高手必备!堆与优先队列的高级应用,掌握它们,技术路上畅通无阻!
【7月更文挑战第9天】Python的heapq模块实现了堆数据结构,提供O(log n)操作如`heappush`和`heappop`。堆是完全二叉树,用于优先队列,保证最大/最小元素快速访问。例如,最小堆弹出最小元素,常用于Dijkstra算法找最短路径、Huffman编码压缩数据及任务调度。通过`heappush`和`heappop`可创建和管理优先队列,如`(优先级, 数据)`元组形式。理解并运用这些概念能优化算法效率,解决复杂问题。
186 2