决策树
1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。
2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。
决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、C4.5和CART。
3.特征选择的目的在于选取对训练数据能够分类的特征。特征选择的关键是其准则。常用的准则如下:
4.决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。
5.决策树的剪枝。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。
import numpy as np import pandas as pd import math from math import log
1 创建数据
def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'], ] labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 返回数据集和每个维度的名称 return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
年龄 |
有工作 | 有自己的房子 | 信贷情况 | 类别 | |
0 | 青年 | 否 | 否 | 一般 | 否 |
1 | 青年 | 否 | 否 | 好 | 否 |
2 | 青年 | 是 | 否 | 好 | 是 |
3 | 青年 | 是 | 是 | 一般 | 是 |
4 | 青年 | 否 | 否 | 一般 | 否 |
5 | 中年 | 否 | 否 | 一般 | 否 |
6 | 中年 | 否 | 否 | 好 | 否 |
7 | 中年 | 是 | 是 | 好 | 是 |
8 | 中年 | 否 | 是 | 非常好 | 是 |
9 | 中年 | 否 | 是 | 非常好 | 是 |
10 | 老年 | 否 | 是 | 非常好 | 是 |
11 | 老年 | 否 | 是 | 好 | 是 |
12 | 老年 | 是 | 否 | 好 | 是 |
13 | 老年 | 是 | 否 | 非常好 | 是 |
14 | 老年 | 否 | 否 | 一般 | 否 |
2 定义香农信息熵
def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent
3 条件熵
def cond_ent(datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()]) return cond_ent
calc_ent(datasets)
0.9709505944546686
4 信息增益
def info_gain(ent, cond_ent): return ent - cond_ent
5 计算所有特征的信息增益,选择最优最大信息增益的特征返回
def info_gain_train(datasets): count = len(datasets[0]) - 1 ent = calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = info_gain(ent, cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) print('特征({}) 的信息增益为: {:.3f}'.format(labels[c], c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
特征(年龄) 的信息增益为: 0.083 特征(有工作) 的信息增益为: 0.324 特征(有自己的房子) 的信息增益为: 0.420 特征(信贷情况) 的信息增益为: 0.363 '特征(有自己的房子)的信息增益最大,选择为根节点特征'
6 利用ID3算法生成决策树
# 定义节点类 二叉树 class Node: def __init__(self, root=True, label=None, feature_name=None, feature=None): self.root = root self.label = label self.feature_name = feature_name self.feature = feature self.tree = {} self.result = { 'label:': self.label, 'feature': self.feature, 'tree': self.tree } def __repr__(self): return '{}'.format(self.result) def add_node(self, val, node): self.tree[val] = node def predict(self, features): if self.root is True: return self.label current_tree=self.tree[features[self.feature]] features.pop(self.feature) return current_tree.predict(features) class DTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon self._tree = {} # 熵 @staticmethod def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent # 经验条件熵 def cond_ent(self, datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()]) return cond_ent # 信息增益 @staticmethod def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(self, datasets): count = len(datasets[0]) - 1 ent = self.calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return best_ def train(self, train_data): """ input:数据集D(DataFrame格式),特征集A,阈值eta output:决策树T """ _, y_train, features = train_data.iloc[:,:-1], train_data.iloc[:,-1], train_data.columns[:-1] # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T if len(y_train.value_counts()) == 1: return Node(root=True, label=y_train.iloc[0]) # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T if len(features) == 0: return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0]) # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征 max_feature, max_info_gain = self.info_gain_train(np.array(train_data)) max_feature_name = features[max_feature] # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T if max_info_gain < self.epsilon: return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0]) # 5,构建Ag子集 node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature) feature_list = train_data[max_feature_name].value_counts().index for f in feature_list: sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1) # 6, 递归生成树 sub_tree = self.train(sub_train_df) node_tree.add_node(f, sub_tree) return node_tree def fit(self, train_data): self._tree = self.train(train_data) return self._tree def predict(self, X_test): return self._tree.predict(X_test)
7 利用数据构造一颗决策树
datasets, labels = create_data() data_df = pd.DataFrame(datasets, columns=labels) dt = DTree() tree = dt.fit(data_df)
data_df
年龄 | 有工作 | 有自己的房子 | 信贷情况 | 类别 | |
0 | 青年 | 否 | 否 | 一般 | 否 |
1 | 青年 | 否 | 否 | 好 | 否 |
2 | 青年 | 是 | 否 | 好 | 是 |
3 | 青年 | 是 | 是 | 一般 | 是 |
4 | 青年 | 否 | 否 | 一般 | 否 |
5 | 中年 | 否 | 否 | 一般 | 否 |
6 | 中年 | 否 | 否 | 好 | 否 |
7 | 中年 | 是 | 是 | 好 | 是 |
8 | 中年 | 否 | 是 | 非常好 | 是 |
9 | 中年 | 否 | 是 | 非常好 | 是 |
10 | 老年 | 否 | 是 | 非常好 | 是 |
11 | 老年 | 否 | 是 | 好 | 是 |
12 | 老年 | 是 | 否 | 好 | 是 |
13 | 老年 | 是 | 否 | 非常好 | 是 |
14 | 老年 | 否 | 否 | 一般 | 否 |
tree
{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}} 有无房子 否 是 ↓ ↓ 有无工作 是 否 是 ↓ ↓ 否 是
tree.predict(['老年', '否', '否', '一般'])
'否'
datasets
[['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否']]
labels
['年龄', '有工作', '有自己的房子', '信贷情况', '类别']
dt.predict(['老年', '否', '否', '一般'])
'否'
Scikit-learn实例
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter
使用Iris数据集,我们可以构建如下树:
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, [0, 1, -1]]) # print(data) return data[:, :2], data[:, -1],iris.feature_names[0:2] X, y,feature_name= create_data() X, y,feature_name
(array([[5.1, 3.5], [4.9, 3. ], [4.7, 3.2], [4.6, 3.1], [5. , 3.6], [5.4, 3.9], [4.6, 3.4], [5. , 3.4], [4.4, 2.9], [4.9, 3.1], [5.4, 3.7], [4.8, 3.4], [4.8, 3. ], [4.3, 3. ], [5.8, 4. ], [5.7, 4.4], [5.4, 3.9], [5.1, 3.5], [5.7, 3.8], [5.1, 3.8], [5.4, 3.4], [5.1, 3.7], [4.6, 3.6], [5.1, 3.3], [4.8, 3.4], [5. , 3. ], [5. , 3.4], [5.2, 3.5], [5.2, 3.4], [4.7, 3.2], [4.8, 3.1], [5.4, 3.4], [5.2, 4.1], [5.5, 4.2], [4.9, 3.1], [5. , 3.2], [5.5, 3.5], [4.9, 3.6], [4.4, 3. ], [5.1, 3.4], [5. , 3.5], [4.5, 2.3], [4.4, 3.2], [5. , 3.5], [5.1, 3.8], [4.8, 3. ], [5.1, 3.8], [4.6, 3.2], [5.3, 3.7], [5. , 3.3], [7. , 3.2], [6.4, 3.2], [6.9, 3.1], [5.5, 2.3], [6.5, 2.8], [5.7, 2.8], [6.3, 3.3], [4.9, 2.4], [6.6, 2.9], [5.2, 2.7], [5. , 2. ], [5.9, 3. ], [6. , 2.2], [6.1, 2.9], [5.6, 2.9], [6.7, 3.1], [5.6, 3. ], [5.8, 2.7], [6.2, 2.2], [5.6, 2.5], [5.9, 3.2], [6.1, 2.8], [6.3, 2.5], [6.1, 2.8], [6.4, 2.9], [6.6, 3. ], [6.8, 2.8], [6.7, 3. ], [6. , 2.9], [5.7, 2.6], [5.5, 2.4], [5.5, 2.4], [5.8, 2.7], [6. , 2.7], [5.4, 3. ], [6. , 3.4], [6.7, 3.1], [6.3, 2.3], [5.6, 3. ], [5.5, 2.5], [5.5, 2.6], [6.1, 3. ], [5.8, 2.6], [5. , 2.3], [5.6, 2.7], [5.7, 3. ], [5.7, 2.9], [6.2, 2.9], [5.1, 2.5], [5.7, 2.8]]), array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]), ['sepal length (cm)', 'sepal width (cm)'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((70, 2), (30, 2), (70,), (30,))