Python--深入浅出的装饰器--1

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Python--深入浅出的装饰器--1

前言

这里是清安,本章一起深入浅出一下装饰器。前面我们讲过一章装饰器了。不知道各位看懂了多少。每太看懂也没关系,本章就一起实操一下。

简单的例子

例1

def outer(fun):
    print("1....")
    def inner():
        print("2.....")
        fun()
    return inner
@outer
def count():
    print("3....")
if __name__ == '__main__':
    print("4....")
    count()

例2

def outer(fun):
    print("1....")
    def inner():
        print("2.....")
        fun()
    return inner
def count():
    print("3....")
count = outer(count)
print("4....")
count()

上述的两个例子,执行结果为:1423.为什么呢???

解析

语法糖:什么是语法糖?

「我们在count上有这么一个@outer的函数名称,那么他实际的的意思是count = outer(count)。那么在不用@outer的时候就跟例2一样。用一个相同的变量名替换原来的,但是内存地址发生了改变。这样来实现了一个调用的过程。有点偷梁换柱的意思。」

1、看完上述,是否有那么一点理解为什么是1423了。首先会进入装饰器所以会执行print("1....")

------------------------------------------------------------------------------

2、执行完了步骤一,那么解析来就需要打印print("4...")了。为什么?因为outer函数执行完了。

-------------------------------------------------------------------------------

3、那么为什么outer函数执行完了,不输出print('2....')?因为我们已经偷梁换柱了,return了inner,此时这里的count()就是inner(),所以执行count()函数,实际上就是执行inner()所以会输出print('2....')  ------------------------------------------------------------------------------

4、那么这个print('3....')为什么最后才输出,因为我们outer(count),count已经参数传递了,在装饰器中,在inner的最后面我们调用了fun()。所以最后输出print('3....')

现在是否已经理解了呢。如果还不理解,那么就打断点debug看看怎么运行的,再结合理解一下。


例子1,时间戳-函数执行时间

import time
def count_time(fun):
    def inner():
        st_time = time.time()
        fun()
        ed_time = time.time()
        print(f"函数耗时{ed_time-st_time}")
    return stop
@count_time
def test01():
    for i in range(5):
        time.sleep(0.1)
    print("正在执行 原函数")
if __name__ == '__main__':
    test01()

只要前面的内容看懂了,此处函数执行时间的例子还是很容易看懂的。此处就是多增了一个time模块。用来获取当前时间的。所以,函数执行获取一次当前时间,函数结束获取一次当前时间,用结束的时间减去开始的时间,就是函数执行花费的时间。

为了突出函数执行花费的时间,这里我也是调用了time中的sleep方法,再test01中进行了等待。每次循环完等待0.1S.


例子2,日志信息

import logging
def logger(fun):
    def inner(*args,**kwargs):
        logging.basicConfig(format='[时间:%(asctime)s  日志级别:%(levelname)s  文件名:%(filename)s  第%(lineno)d行:>>>日志信息:%(message)s]',
                                  level=logging.DEBUG)
        logging.debug(f"参数是:{args}")
        logging.debug(f"返回值是:{fun(*args,**kwargs)}")
        reslut = fun(*args)
        return reslut
    return inner
@logger
def test1(num):
    return num
@logger
def test02(num,number):
    return num+number
if __name__ == '__main__':
    test1(1)
    test02(1,2)

此处也是一个比较实用的例子,在写自动化代码的过程中,我们需要给自己写的程序增加日志信息。虽然可以以类的形式来呈现,通过调用来完成。但是我想高大上,简易点怎么写呢?

此处先带你简略的了解一下!

这里也是非常的简单,导入logging模块,调用里面的basicConfig方法,指定写入的格式也就是format。指定日志信息详细度。随后调用输出什么样的详细程度的信息,并指定一些参数,也就是logging.debug()处。这样你就能得到一个简约的日志信息了。看截图:


相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
1月前
|
测试技术 Python
Python装饰器:为你的代码施展“魔法”
Python装饰器:为你的代码施展“魔法”
231 100
|
2月前
|
设计模式 缓存 监控
Python装饰器:优雅增强函数功能
Python装饰器:优雅增强函数功能
258 101
|
1月前
|
缓存 Python
Python装饰器:为你的代码施展“魔法
Python装饰器:为你的代码施展“魔法
149 88
|
2月前
|
缓存 测试技术 Python
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
199 99
|
2月前
|
存储 缓存 测试技术
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
181 98
|
2月前
|
缓存 Python
Python中的装饰器:优雅地增强函数功能
Python中的装饰器:优雅地增强函数功能
|
2月前
|
存储 缓存 测试技术
理解Python装饰器:简化代码的强大工具
理解Python装饰器:简化代码的强大工具
|
3月前
|
程序员 测试技术 开发者
Python装饰器:简化代码的强大工具
Python装饰器:简化代码的强大工具
207 92
|
2月前
|
缓存 测试技术 Python
解锁Python超能力:深入理解装饰器
解锁Python超能力:深入理解装饰器
112 2