Baumer工业相机堡盟相机如何通过OpenCV直接使用图像数据进行图像显示(C++)

简介: Baumer工业相机堡盟相机如何通过OpenCV直接使用图像数据进行图像显示(C++)

Baumer工业相机

Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。


Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。

Baumer工业相机可以联合OpenCV实现图像的直接显示。


Baumer工业相机SDK联合OpenCV的技术背景

Baumer工业相机SDK是一种软件开发工具包,用于与工业相机通信和图像采集。这些SDK通常包含驱动程序和API,可以让开发人员使用多个编程语言(例如C++、C#、Python)编写应用程序。它们也提供了许多图像参数和相机参数的控制选项,以便满足各种应用需求。


OpenCV是一种流行且广泛使用的计算机视觉库,提供了大量的图像处理和计算机视觉算法,例如图像过滤、特征提取、目标检测等。OpenCV可以与工业相机SDK集成,以便对从相机采集的图像进行处理和分析。


联合使用工业相机SDK和OpenCV,开发人员可以实现更高级别的图像处理和视觉分析应用。例如,他们可以使用工业相机SDK实现图像采集和实时显示,然后使用OpenCV进行图像处理和物体检测。他们还可以使用OpenCV的计算机视觉算法来实现特定应用,例如质量控制、机器人视觉导航和自动识别等。

这里主要描述如何在C++的平台下实现通过OpenCV直接将图像指针数据转换为OpenCV数据直接显示的核心代码,


代码分析

本文介绍使用Opencv对Baumer的工业相机进行开发时,使用通过BGAPI SDK和OpenCV直接进行图像显示的功能


1.引用合适的类文件

C++环境下核心代码如下所示:

.h文件

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<opencv2\opencv.hpp>

.cpp文件

#pragma comment(lib, "opencv_world341.lib")
#pragma comment(lib, "opencv_world341d.lib")

2.在回调函数里OpenCV直接使用图像数据进行图像显示

后续进行图像转换为OpenCV库的Mat图像并进行拼接和显示的核心代码,如下所示:

void* buffer_pointer = buffer_filled->GetMemPtr();
uint64_t buffer_size = buffer_filled->GetSizeFilled();
BGAPI2::Image* image = image_processor->CreateImage(image_width, image_height,
    pixel_format, buffer_pointer, buffer_size);
CheckAndFixRoi(&roi, image_width, image_height);
#if USE_OPENCV
// Display the image
if (pixel_format == "Mono8") {
    ShowImage(buffer_pointer, image_width, image_height, CV_8UC1, &roi);
} else {
    // Convert to BGR8
    const size_t size = static_cast<size_t>(image->GetTransformBufferLength("BGR8"));
    char* mem_buffer = new char[size];
    if (mem_buffer) {
        image_processor->TransformImageToBuffer(image, "BGR8", mem_buffer, size);
        ShowImage(mem_buffer, image_width, image_height, CV_8UC3, &roi);
        delete[] mem_buffer;
    }
}
#endif
#ifdef USE_OPENCV  // OpenCV
//---------------------------------------------------------------------------------------------------------------------
// If the example is compiled with OpenCV this method is used to show the images from the camera
void ShowImage(void* buffer, int64_t width, int64_t height, int type, ROI* roi) {
  cv::Mat img(static_cast<int>(height), static_cast<int>(width), type, buffer, cv::Mat::AUTO_STEP);
    if (roi) {
        cv::rectangle(
            img,
            cv::Point(static_cast<int>(roi->x + 1), static_cast<int>(roi->y + 1)),
            cv::Point(static_cast<int>(roi->x + roi->width - 2), static_cast<int>(roi->y + roi->height - 2)),
            cv::Scalar(255, 0, 255),
            3
        );
    }
    static int showtest = 0;
    if (!showtest++) {
        cv::namedWindow("Test Image", cv::WINDOW_NORMAL);
        cv::moveWindow("Test Image", 100, 100);
        cv::resizeWindow("Test Image", 1000, 800);
    }
    cv::imshow("Test Image", img);
    cv::waitKey(1);
}
#endif  // USE_OPENCV   // OpenCV
// Checks, if the choosen Region of Interest fits the camera sensor.
// If it is outside the sensor, it will be reduced to fit.
bool CheckAndFixRoi(ROI* roi, int64_t width, int64_t height) {
    bool result = false;
    if (roi) {
        result = true;
        if (roi->x <= 0) {
            result = false;
            roi->x = 0;
        }
        if (roi->y <= 0) {
            result = false;
            roi->y = 0;
        }
        if (roi->width <= 0 || roi->width > width - roi->x) {
            result = false;
            roi->width = width - roi->x;
        }
        if (roi->height <= 0 || roi->height > height - roi->y) {
            result = false;
            roi->height = height - roi->y;
        }
    }
    return result;
}
// This example uses a Software Trigger to get images from the camera. This method will trigger regularly using 
// a separate thread to trigger and calculate in parallel.
void SoftwareTriggerThread(BGAPI2::Device* device, int64_t time_delay) {
    std::this_thread::sleep_for(std::chrono::milliseconds(time_delay));
    device->GetRemoteNode("TriggerSoftware")->Execute();
}

工业相机图像通过OpenCV转为Mat图像的优点

低水平图像处理: OPENCV为低级别的图像处理提供了一套丰富的库。它允许轻松访问图像特征,如对比度、亮度和颜色校正。


实时视频处理: 使用OPENCV,你可以实时处理视频流,允许对处理过程进行即时反馈和调整。


精确的物体检测: OPENCV提供先进的物体检测和识别算法,能够准确识别和跟踪视频流中的物体。


高效的硬件利用: OPENCV的设计旨在最大限度地提高硬件利用率,使其成为一个高效的视频处理平台。


跨平台兼容性: OPENCV与多种操作系统兼容,使其易于集成到现有的软件系统中。


总的来说,通过OPENCV将工业相机图像转换为Mat图像,可以实现高效、准确、实时的图像处理和分析,使其成为工业应用的有力工具。


工业相机图像通过OpenCV转为Mat图像的行业应用

自动化生产控制:工业相机可以用于自动化生产控制,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对产品进行检测、分类、计数等操作,实现自动化生产控制。


智能交通:工业相机可以用于智能交通,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对车辆进行识别、计数、跟踪等操作,实现智能交通管理。


医疗影像:工业相机可以用于医疗影像,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对医疗影像进行分析、诊断等操作,提高医疗诊断的准确性和效率。


物流仓储:工业相机可以用于物流仓储,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对物流仓储过程进行监控、管理、智能化等操作,提高物流仓储效率和安全性。


视频监控:工业相机可以用于视频监控,将其拍摄的图像通过SDK转为OPENCV的MAT图像后,可以使用图像处理技术对视频图像进行分析、识别、跟踪等操作,实现智能化视频监控。

目录
相关文章
|
25天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
49 12
|
16天前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
21 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
7月前
|
计算机视觉 Windows Python
windows下使用python + opencv读取含有中文路径的图片 和 把图片数据保存到含有中文的路径下
在Windows系统中,直接使用`cv2.imread()`和`cv2.imwrite()`处理含中文路径的图像文件时会遇到问题。读取时会返回空数据,保存时则无法正确保存至目标目录。为解决这些问题,可以使用`cv2.imdecode()`结合`np.fromfile()`来读取图像,并使用`cv2.imencode()`结合`tofile()`方法来保存图像至含中文的路径。这种方法有效避免了路径编码问题,确保图像处理流程顺畅进行。
616 1
|
2月前
|
存储 算法 搜索推荐
【C++面向对象——群体类和群体数据的组织】实现含排序功能的数组类(头歌实践教学平台习题)【合集】
1. **相关排序和查找算法的原理**:介绍直接插入排序、直接选择排序、冒泡排序和顺序查找的基本原理及其实现代码。 2. **C++ 类与成员函数的定义**:讲解如何定义`Array`类,包括类的声明和实现,以及成员函数的定义与调用。 3. **数组作为类的成员变量的处理**:探讨内存管理和正确访问数组元素的方法,确保在类中正确使用动态分配的数组。 4. **函数参数传递与返回值处理**:解释排序和查找函数的参数传递方式及返回值处理,确保函数功能正确实现。 通过掌握这些知识,可以顺利地将排序和查找算法封装到`Array`类中,并进行测试验证。编程要求是在右侧编辑器补充代码以实现三种排序算法
52 5
|
2月前
|
Serverless 编译器 C++
【C++面向对象——类的多态性与虚函数】计算图像面积(头歌实践教学平台习题)【合集】
本任务要求设计一个矩形类、圆形类和图形基类,计算并输出相应图形面积。相关知识点包括纯虚函数和抽象类的使用。 **目录:** - 任务描述 - 相关知识 - 纯虚函数 - 特点 - 使用场景 - 作用 - 注意事项 - 相关概念对比 - 抽象类的使用 - 定义与概念 - 使用场景 - 编程要求 - 测试说明 - 通关代码 - 测试结果 **任务概述:** 1. **图形基类(Shape)**:包含纯虚函数 `void PrintArea()`。 2. **矩形类(Rectangle)**:继承 Shape 类,重写 `Print
59 4
|
5月前
|
Ubuntu Linux 编译器
Linux/Ubuntu下使用VS Code配置C/C++项目环境调用OpenCV
通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。
1115 3
|
6月前
|
存储 计算机视觉 C++
在C++中实现Armadillo库与OpenCV库之间的数据格式转换
在C++中实现Armadillo库与OpenCV库之间的数据格式转换是一项常见且实用的技能。上述步骤提供了一种标准的方法来进行这种转换,可以帮助开发者在两个库之间高效地转移和处理数据。虽然转换过程相对直接,但开发者应留意数据类型匹配和性能优化等关键细节。
90 11
|
6月前
|
存储 计算机视觉 C++
在C++中实现Armadillo库与OpenCV库之间的数据格式转换
在C++中实现Armadillo库与OpenCV库之间的数据格式转换是一项常见且实用的技能。上述步骤提供了一种标准的方法来进行这种转换,可以帮助开发者在两个库之间高效地转移和处理数据。虽然转换过程相对直接,但开发者应留意数据类型匹配和性能优化等关键细节。
62 3
|
5月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
1251 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
6月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
86 4