数据库 - 索引 设计与使用 原则

简介: 数据库 - 索引 设计与使用 原则

一、设计原则

  1. 对数据量较大(超过100万),且查询较频繁的表建立索引,几千条几万条无需建立索引,查询速度也很快
  2. 要控制索引的数量,索引会占用磁盘空间,而且影响数据库的增删改性能,因此,如果多改少查,哪怕数据量很大,也可以不建索引
  3. 针对经常被作为查询条件( where 、 order by 、 group by )的字段建立索引
  4. 对区分度不高的字段建索引的意义不大 , 比如 : 性别 、状态字段
  5. 对大文本字段优先考虑建立前缀索引

二、使用原则

  1. 如果能使用联合索引就不用单列索引
  2. 使用联合索引时要考虑 最左前缀法则
  3. select 的字段尽量是一次索引就能找全的,减少回表查询
  4. 尽量避免索引失效情况


目录
相关文章
|
3月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
108 4
|
4月前
|
存储 算法 关系型数据库
数据库主键与索引详解
本文介绍了主键与索引的核心特性及其区别。主键具有唯一标识、数量限制、存储类型和自动排序等特点,用于确保数据完整性和提升查询效率;而索引通过特殊数据结构(如B+树、哈希)优化查询速度,适用于不同场景。文章分析了主键与索引的优劣、适用场景及工作原理,并对比两者在唯一性、数量限制、功能定位等方面的差异,为数据库设计提供指导。
|
11月前
|
数据库 索引
深入探索数据库索引技术:回表与索引下推解析
【10月更文挑战第15天】在数据库查询优化的领域中,回表和索引下推是两个核心概念,它们对于提高查询性能至关重要。本文将详细解释这两个术语,并探讨它们在数据库操作中的作用和影响。
191 3
|
7月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
● B+树更便于遍历:由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。 ● B+树的磁盘读写代价更低:B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。 ● B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条
|
8月前
|
存储 SQL 数据库
关系数据库-数据库事务处理与ACID原则
本文详细介绍了关系数据库中的事务处理和ACID原则。通过事务处理,可以确保数据库操作的原子性、一致性、隔离性和持久性,从而提高数据的可靠性和一致性。在实际应用中,可以通过事务控制语句和适当的隔离级别,确保复杂操作的正确执行。希望本文能帮助您更好地理解和应用数据库事务处理,提高数据库系统的可靠性和性能。
341 18
|
10月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
129 6
|
11月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
139 1
|
11月前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
161 2
|
11月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
1096 1
|
11月前
|
存储 关系型数据库 数据库
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。
321 0

热门文章

最新文章