Redis - 三大缓存问题(穿透、击穿、雪崩)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis 三大缓存问题的概念以及对应的解决方案......

缓存穿透

概念: 查询一个数据库中也不存在的数据,数据库查询不到数据也就不会写入缓存,就会导致一直查询数据库

解决方法:

1. 缓存空数据

如果数据库也查询不到,就把空结果进行缓存

缺点是 - 消耗内存

2. 使用布隆过滤器

布隆过滤器的作用 :检索一个元素是否在某个集合中

布隆过滤器由组成 : 位图 + 若干哈希函数

位图: 一个以 bit (位) 为单位的数组,数组中的每个单位只能存储二进制数 0 或 1 ,并且在初始状态下都为 1

比如数据库中有个 id=1 的数据,布隆过滤器会通过三个哈希函数分别计算出其哈希值为 1 、3 、7 ,将这三个位置的值置为 1

接着依次将数据库中的其他数据按照该方法写入布隆过滤器

如果此时请求查询 id = -1,根据那三个哈希函数计算得到的哈希值为 1 、 3 、 14 ,并且位图中 14 位置的值为0, 那么我们就可以肯定这个数据在MySQL中不存在

但如果 计算出来的值是 1 、 3 、 14 ,且这三个位置的值都为 1,那也不能确定 id=-1 的数据在数据库中存在,比如以下情况

1 、 3 、 14 三个位置的值都为 1 ,并不是因为 id=-1 的数据存在,而是恰巧 id=1 和 id=2 的存在使得 1 、 3 、 14 三个位置的值都为 1

我们可以想到,数组越小,误判的概率就越大,上面的位图只是做演示,实际上的位图长度非常长

在 Java 中提供了具体的实现方案 Redisson 和 Guava

布隆过滤器的预热 和 缓存的预热是在同一时刻进行的,之后的请求都会先打到布隆过滤器上,如果布隆过滤器判断该数据不存在直接返回,如果判断存在再放行查询缓存

缓存击穿

概念:一个非常热点的key在扛着大并发,当这个key过期的时候,持续的大并发就穿破缓存,直接打到数据库上,把数据库压垮

解决方法:

添加互斥锁(分布式锁)

当 线程1 查询缓存未命中时,添加一个互斥锁,接着查询数据库重建缓存,重建缓存的过程中,又来个 线程2 ,线程2 也不会命中缓存,那么 线程2 会尝试获取互斥锁,但是失败(因为此时被线程1持有),线程2 会休眠一会儿重试,直到 线程1 重建缓存成功,线程2 N次尝试后命中缓存

实例代码如下:

逻辑过期

概念: 对热点数据不设置过期时间,我们在写缓存的时候添加一个过期时间字段

其执行过程如下

线程1 查询缓存,发现数据已经逻辑过期,则获取互斥锁,并创建子线程 线程2 去重建缓存,然后直接返回过期的数据,在 线程2 重建缓存的过程中,又来个 线程3 发现缓存也过期了,而获取互斥锁失败,同样直接返回过期数据

两种方法的比较:

  • 互斥锁 -- 能保证数据的强一致性 但是 性能较差
  • 逻辑过期 -- 优先保证高可用,但是数据一致性较差

现实开发过程中,要根据不同的业务场景进行选择,如果业务中设计金钱交易,一般要保证高可用,选择互斥锁,而在互联网的场景中,更加注重用户体验的场景,首选逻辑过期方案

缓存雪崩

概念: 在同一个时段内,有大量的key同时失效 或者 Redis服务器宕机,导致大量请求到达服务器,带来巨大压力

解决方法:

如果是有大量的key同时失效 -- 给不同的key的过期时间添加随机值

如果是Redis服务器宕机 -- 搭建Redis高可用集群

兜底方案 -- 给缓存业务添加降级限流策略

对于这三个问题,都可以使用 降级限流策略 解决,但是降级限流会影响用户体验

目录
相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3月前
|
缓存 数据库连接 数据库
缓存三剑客(穿透、击穿、雪崩)
缓存穿透指查询数据库和缓存中都不存在的数据,导致请求直接冲击数据库。解决方案包括缓存空对象和布隆过滤器。缓存击穿是大量请求访问同一个失效的热点数据,使数据库瞬间压力剧增,解决方法有提前预热、设置永不过期、加锁限流等。缓存雪崩是大量key同时失效,导致所有请求直达数据库,可通过引入随机过期时间缓解。三者分别对应单点爆破、全面崩塌等问题,需根据场景选择合适策略优化系统性能与稳定性。
219 0
|
3月前
|
存储 缓存 NoSQL
如何解决缓存击穿?
缓存击穿是指热点数据失效时大量请求直接冲击数据库,可能导致系统崩溃。解决方案包括:永不过期策略避免缓存失效瞬间的穿透;互斥锁控制并发访问;热点预热提前刷新缓存;熔断降级在数据库压力大时返回默认值;二级缓存降低Redis压力。实际中常组合使用多种方案,如热点预热+互斥锁+熔断降级,以提升系统稳定性与性能。
320 0
|
18天前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
107 1
Redis专题-实战篇二-商户查询缓存
|
5月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
731 0
|
18天前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
2月前
|
缓存 监控 安全
告别缓存击穿!Go 语言中的防并发神器:singleflight 包深度解析
在高并发场景中,多个请求同时访问同一资源易导致缓存击穿、数据库压力过大。Go 语言提供的 `singleflight` 包可将相同 key 的请求合并,仅执行一次实际操作,其余请求共享结果,有效降低系统负载。本文详解其原理、实现及典型应用场景,并附示例代码,助你掌握高并发优化技巧。
202 0
|
3月前
|
缓存 NoSQL 数据库
什么是缓存击穿
缓存击穿是指热点缓存key突然失效,导致大量并发请求直接冲击数据库,造成巨大压力。常见于高并发场景,如热门商品信息失效时。解决方法包括设置热点key永不过期、使用分布式锁、预热数据、熔断降级等,以保障系统稳定性。
476 0
|
3月前
|
缓存 数据库
如何解决缓存穿透?
对请求增加校验机制,如ID格式和位数校验,避免无效请求;缓存空值或特殊值防止缓存穿透;使用布隆过滤器拦截不存在的请求,减轻数据库压力。
42 0
|
5月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
194 32