【python数据分析】用scipy.optimize.linprog实现线性规划

简介: 本篇为用scipy.optimize.linprog线性规划。


因为近期要参加一个建模比赛,没有安装MATLAB,所以熟悉下算法的python实现,本篇为用scipy.optimize.linprog线性规划。

函数文档参考scipy.optimize.linprog — SciPy v1.8.0 Manual

线性规划主要解决下面这种问题:
$$ \min_{x}c^Tx\\ s.t.\begin{cases} Ax \leq b \\ A_{eq}x = b_{eq} \\ l \leq x \leq u \end{cases} $$
(不是这样的形式要转化一下,如求最大值)

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None)

其中,c是价值向量;A_ub和b_ub对应线性不等式约束;A_eq和b_eq对应线性等式约束;bounds对应公式中的lb和ub,决策向量的下界和上界;method是求解器的类型,如单纯形法;其他的参数暂时不用。

例题1:
$$ minf = -1 \times x_{0} + 4 \times x_{1} \\ s.t.\begin{cases} -3 \times x_{0}+1\times x_{1} \leq 6\\ 1\times x_{0}+2\times x_{1} \leq 4\\ x_{1} \ge -3 \end{cases} $$

用scipy.optimize.linprog计算

from scipy.optimize import linprog
C = [-1,4] 
A = [[-3,1],[1,2]]
b = [6,4]
X0_bounds = [None,None]
X1_bounds = [-3,None]
res = linprog(C,A,b,bounds=(X0_bounds,X1_bounds))
print(res)
     fun: -22.0
 message: 'Optimization terminated successfully.'
     nit: 1
   slack: array([39.,  0.])
  status: 0
 success: True
       x: array([10., -3.])

最优解为-22,x0=10,x1=-3.

例题2:

如果是求最大值

$$ maxf = -1 \times x_{0} + 4 \times x_{1} \\ s.t.\begin{cases} -3 \times x_{0}+1\times x_{1} \leq 6\\ 1\times x_{0}+2\times x_{1} \leq 4\\ x_{1} \ge -3 \end{cases} $$

我们转化为

$$ min-f = -1 \times x_{0} + 4 \times x_{1} \\ s.t.\begin{cases} -3 \times x_{0}+1\times x_{1} \leq 6\\ 1\times x_{0}+2\times x_{1} \leq 4\\ x_{1} \ge -3 \end{cases} $$

用scipy.optimize.linprog计算

from scipy.optimize import linprog
C = [1,-4] 
A = [[-3,1],[1,2]]
b = [6,4]
X0_bounds = [None,None]
X1_bounds = [-3,None]
res = linprog(C,A,b,bounds=(X0_bounds,X1_bounds))
print(res)
     fun: -11.428571428571429
 message: 'Optimization terminated successfully.'
     nit: 2
   slack: array([0., 0.])
  status: 0
 success: True
       x: array([-1.14285714,  2.57142857])

最优解为11.428571428571429,x0=-1.14285714,x1=2.57142857。

相关文章
|
19天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
29天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
48 3
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
74 0
|
23天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
70 4
数据分析的 10 个最佳 Python 库
|
26天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
24天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
28天前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
29天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
42 2