强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战

简介: 强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战

强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战

项目链接见文末fork一下直接运行

1、定义算法

1.1 定义模型

!pip uninstall -y parl
!pip install parl
import parl
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class Actor(parl.Model):
    def __init__(self, n_states, n_actions):
        super(Actor, self).__init__()

        self.l1 = nn.Linear(n_states, 400)
        self.l2 = nn.Linear(400, 300)
        self.l3 = nn.Linear(300, n_actions)

    def forward(self, state):
        x = F.relu(self.l1(state))
        x = F.relu(self.l2(x))
        return paddle.tanh(self.l3(x))

class Critic(parl.Model):
    def __init__(self, n_states, n_actions):
        super(Critic, self).__init__()

        self.l1 = nn.Linear(n_states, 400)
        self.l2 = nn.Linear(400 + n_actions, 300)
        self.l3 = nn.Linear(300, 1)

    def forward(self, state, action):
        x = F.relu(self.l1(state))
        x = F.relu(self.l2(paddle.concat([x, action], 1)))
        return self.l3(x)
class ActorCritic(parl.Model):
    def __init__(self, n_states, n_actions):
        super(ActorCritic, self).__init__()
        self.actor_model = Actor(n_states, n_actions)
        self.critic_model = Critic(n_states, n_actions)

    def policy(self, state):
        return self.actor_model(state)

    def value(self, state, action):
        return self.critic_model(state, action)

    def get_actor_params(self):
        return self.actor_model.parameters()

    def get_critic_params(self):
        return self.critic_model.parameters()

1.2 定义经验回放

from collections import deque
import random
class ReplayBuffer:
    def __init__(self, capacity: int) -> None:
        self.capacity = capacity
        self.buffer = deque(maxlen=self.capacity)
    def push(self,transitions):
        '''_summary_
        Args:
            trainsitions (tuple): _description_
        '''
        self.buffer.append(transitions)
    def sample(self, batch_size: int, sequential: bool = False):
        if batch_size > len(self.buffer):
            batch_size = len(self.buffer)
        if sequential: # sequential sampling
            rand = random.randint(0, len(self.buffer) - batch_size)
            batch = [self.buffer[i] for i in range(rand, rand + batch_size)]
            return zip(*batch)
        else:
            batch = random.sample(self.buffer, batch_size)
            return zip(*batch)
    def clear(self):
        self.buffer.clear()
    def __len__(self):
        return len(self.buffer)

1.3 定义智能体

import parl
import paddle
import numpy as np


class DDPGAgent(parl.Agent):
    def __init__(self, algorithm,memory,cfg):
        super(DDPGAgent, self).__init__(algorithm)
        self.n_actions = cfg['n_actions']
        self.expl_noise = cfg['expl_noise']
        self.batch_size = cfg['batch_size'] 
        self.memory = memory
        self.alg.sync_target(decay=0)

    def sample_action(self, state):
        action_numpy = self.predict_action(state)
        action_noise = np.random.normal(0, self.expl_noise, size=self.n_actions)
        action = (action_numpy + action_noise).clip(-1, 1)
        return action

    def predict_action(self, state):
        state = paddle.to_tensor(state.reshape(1, -1), dtype='float32')
        action = self.alg.predict(state)
        action_numpy = action.cpu().numpy()[0]
        return action_numpy

    def update(self):
        if len(self.memory) < self.batch_size: 
            return
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)
        done_batch = np.expand_dims(done_batch , -1)
        reward_batch = np.expand_dims(reward_batch, -1)
        state_batch = paddle.to_tensor(state_batch, dtype='float32')
        action_batch = paddle.to_tensor(action_batch, dtype='float32')
        reward_batch = paddle.to_tensor(reward_batch, dtype='float32')
        next_state_batch = paddle.to_tensor(next_state_batch, dtype='float32')
        done_batch = paddle.to_tensor(done_batch, dtype='float32')
        critic_loss, actor_loss = self.alg.learn(state_batch, action_batch, reward_batch, next_state_batch,
                                                 done_batch)

2. 定义训练

def train(cfg, env, agent):
    ''' 训练
    '''
    print(f"开始训练!")
    rewards = []  # 记录所有回合的奖励
    for i_ep in range(cfg["train_eps"]):
        ep_reward = 0  
        state = env.reset()  
        for i_step in range(cfg['max_steps']):
            action = agent.sample_action(state) # 采样动作
            next_state, reward, done, _ = env.step(action)  
            agent.memory.push((state, action, reward,next_state, done)) 
            state = next_state  
            agent.update()  
            ep_reward += reward  
            if done:
                break
        rewards.append(ep_reward)
        if (i_ep + 1) % 10 == 0:
            print(f"回合:{i_ep+1}/{cfg['train_eps']},奖励:{ep_reward:.2f}")
    print("完成训练!")
    env.close()
    res_dic = {
   
   'episodes':range(len(rewards)),'rewards':rewards}
    return res_dic

def test(cfg, env, agent):
    print("开始测试!")
    rewards = []  # 记录所有回合的奖励
    for i_ep in range(cfg['test_eps']):
        ep_reward = 0  
        state = env.reset()  
        for i_step in range(cfg['max_steps']):
            action = agent.predict_action(state) 
            next_state, reward, done, _ = env.step(action)  
            state = next_state  
            ep_reward += reward 
            if done:
                break
        rewards.append(ep_reward)
        print(f"回合:{i_ep+1}/{cfg['test_eps']},奖励:{ep_reward:.2f}")
    print("完成测试!")
    env.close()
    return {
   
   'episodes':range(len(rewards)),'rewards':rewards}

3、定义环境

OpenAI Gym中其实集成了很多强化学习环境,足够大家学习了,但是在做强化学习的应用中免不了要自己创建环境,比如在本项目中其实不太好找到Qlearning能学出来的环境,Qlearning实在是太弱了,需要足够简单的环境才行,因此本项目写了一个环境,大家感兴趣的话可以看一下,一般环境接口最关键的部分即使reset和step。

import gym
import os
import paddle
import numpy as np
import random
from parl.algorithms import DDPG
class NormalizedActions(gym.ActionWrapper):
    ''' 将action范围重定在[0.1]之间
    '''
    def action(self, action):
        low_bound   = self.action_space.low
        upper_bound = self.action_space.high
        action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
        action = np.clip(action, low_bound, upper_bound)
        return action

    def reverse_action(self, action):
        low_bound   = self.action_space.low
        upper_bound = self.action_space.high
        action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
        action = np.clip(action, low_bound, upper_bound)
        return action
def all_seed(env,seed = 1):
    ''' 万能的seed函数
    '''
    env.seed(seed) # env config
    np.random.seed(seed)
    random.seed(seed)
    paddle.seed(seed)
def env_agent_config(cfg):
    env = NormalizedActions(gym.make(cfg['env_name'])) # 装饰action噪声
    if cfg['seed'] !=0:
        all_seed(env,seed=cfg['seed'])
    n_states = env.observation_space.shape[0]
    n_actions = env.action_space.shape[0]
    print(f"状态维度:{n_states},动作维度:{n_actions}")
    cfg.update({
   
   "n_states":n_states,"n_actions":n_actions}) # 更新n_states和n_actions到cfg参数中
    memory = ReplayBuffer(cfg['memory_capacity'])
    model = ActorCritic(n_states, n_actions)
    algorithm = DDPG(model, gamma=cfg['gamma'], tau=cfg['tau'], actor_lr=cfg['actor_lr'], critic_lr=cfg['critic_lr'])
    agent = DDPGAgent(algorithm,memory,cfg)
    return env,agent

4、设置参数

到这里所有qlearning模块就算完成了,下面需要设置一些参数,方便大家“炼丹”,其中默认的是笔者已经调好的~。另外为了定义了一个画图函数,用来描述奖励的变化。

import argparse
import matplotlib.pyplot as plt
import seaborn as sns
def get_args():
    """ 超参数
    """
    parser = argparse.ArgumentParser(description="hyperparameters")      
    parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
    parser.add_argument('--env_name',default='Pendulum-v0',type=str,help="name of environment")
    parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
    parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
    parser.add_argument('--max_steps',default=100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
    parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
    parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
    parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
    parser.add_argument('--memory_capacity',default=80000,type=int,help="memory capacity")
    parser.add_argument('--expl_noise',default=0.1,type=float)
    parser.add_argument('--batch_size',default=128,type=int)
    parser.add_argument('--target_update',default=2,type=int)
    parser.add_argument('--tau',default=1e-2,type=float)
    parser.add_argument('--critic_hidden_dim',default=256,type=int)
    parser.add_argument('--actor_hidden_dim',default=256,type=int)
    parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")  
    parser.add_argument('--seed',default=1,type=int,help="random seed")
    args = parser.parse_args([])    
    args = {
   
   **vars(args)} # 将args转换为字典  
    # 打印参数
    print("训练参数如下:")
    print(''.join(['=']*80))
    tplt = "{:^20}\t{:^20}\t{:^20}"
    print(tplt.format("参数名","参数值","参数类型"))
    for k,v in args.items():
        print(tplt.format(k,v,str(type(v))))   
    print(''.join(['=']*80))                  
    return args
def smooth(data, weight=0.9):  
    '''用于平滑曲线,类似于Tensorboard中的smooth

    Args:
        data (List):输入数据
        weight (Float): 平滑权重,处于0-1之间,数值越高说明越平滑,一般取0.9

    Returns:
        smoothed (List): 平滑后的数据
    '''
    last = data[0]  # First value in the plot (first timestep)
    smoothed = list()
    for point in data:
        smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值
        smoothed.append(smoothed_val)                    
        last = smoothed_val                                
    return smoothed

def plot_rewards(rewards,cfg,path=None,tag='train'):
    sns.set()
    plt.figure()  # 创建一个图形实例,方便同时多画几个图
    plt.title(f"{tag}ing curve on {cfg['device']} of {cfg['algo_name']} for {cfg['env_name']}")
    plt.xlabel('epsiodes')
    plt.plot(rewards, label='rewards')
    plt.plot(smooth(rewards), label='smoothed')
    plt.legend()

5、训练

# 获取参数
cfg = get_args() 
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)

plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果
训练参数如下:
================================================================================
        参数名                     参数值                     参数类型        
     algo_name                  DDPG               <class 'str'>    
      env_name              Pendulum-v0            <class 'str'>    
     train_eps                  200                <class 'int'>    
      test_eps                   20                <class 'int'>    
     max_steps                 100000              <class 'int'>    
       gamma                    0.99              <class 'float'>   
     critic_lr                 0.001              <class 'float'>   
      actor_lr                 0.0001             <class 'float'>   
  memory_capacity              80000               <class 'int'>    
     expl_noise                 0.1               <class 'float'>   
     batch_size                 128                <class 'int'>    
   target_update                 2                 <class 'int'>    
        tau                     0.01              <class 'float'>   
 critic_hidden_dim              256                <class 'int'>    
  actor_hidden_dim              256                <class 'int'>    
       device                   cpu                <class 'str'>    
        seed                     1                 <class 'int'>    
================================================================================
状态维度:3,动作维度:1
开始训练!
回合:10/200,奖励:-922.80
回合:20/200,奖励:-390.80
回合:30/200,奖励:-125.50
回合:40/200,奖励:-822.66
回合:50/200,奖励:-384.92
回合:60/200,奖励:-132.26
回合:70/200,奖励:-240.20
回合:80/200,奖励:-242.37
回合:90/200,奖励:-127.13
回合:100/200,奖励:-365.29
回合:110/200,奖励:-126.27
回合:120/200,奖励:-231.47
回合:130/200,奖励:-1.98
回合:140/200,奖励:-223.84
回合:150/200,奖励:-123.29
回合:160/200,奖励:-362.06
回合:170/200,奖励:-126.93
回合:180/200,奖励:-119.77
回合:190/200,奖励:-114.72
回合:200/200,奖励:-116.01
完成训练!
开始测试!
回合:1/20,奖励:-125.61
回合:2/20,奖励:-0.97
回合:3/20,奖励:-130.02
回合:4/20,奖励:-117.46
回合:5/20,奖励:-128.45
回合:6/20,奖励:-124.48
回合:7/20,奖励:-118.31
回合:8/20,奖励:-127.18
回合:9/20,奖励:-118.09
回合:10/20,奖励:-0.55
回合:11/20,奖励:-117.72
回合:12/20,奖励:-1.08
回合:13/20,奖励:-124.74
回合:14/20,奖励:-133.55
回合:15/20,奖励:-234.81
回合:16/20,奖励:-126.93
回合:17/20,奖励:-128.20
回合:18/20,奖励:-124.76
回合:19/20,奖励:-119.91
回合:20/20,奖励:-287.89
完成测试!

# 项目链接fork一下直接运行

https://www.heywhale.com/mw/project/649afec770567260f8b79b26

更多优质内容请关注公号:汀丶人工智能

相关文章
|
4天前
|
机器学习/深度学习 算法
算法人生(2):从“强化学习”看如何“活在当下”
本文探讨了强化学习的原理及其在个人生活中的启示。强化学习强调智能体在动态环境中通过与环境交互学习最优策略,不断迭代优化。这种思想类似于“活在当下”的哲学,要求人们专注于当前状态和决策,不过分依赖历史经验或担忧未来。活在当下意味着全情投入每一刻,不被过去或未来牵绊。通过减少执着,提高觉察力和静心练习,我们可以更好地活在当下,同时兼顾历史经验和未来规划。文章建议实践静心、时间管理和接纳每个瞬间,以实现更低焦虑、更高生活质量的生活艺术。
|
4天前
|
机器学习/深度学习 敏捷开发 算法
算法人生(1):从“强化学习”看如何“战胜拖延”
算法人生系列探讨如何将强化学习理念应用于个人成长。强化学习是一种机器学习方法,通过奖励和惩罚促使智能体优化行为策略。它包括识别环境、小步快跑、强正避负和持续调优四个步骤。将此应用于克服拖延,首先要识别拖延原因并分解目标,其次实施奖惩机制,如延迟满足和替换刺激物,最后持续调整策略以最大化效果。通过这种动态迭代过程,我们可以更好地理解和应对生活中的拖延问题。
|
4天前
|
机器学习/深度学习 存储 算法
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
13 1
|
4天前
|
存储 机器学习/深度学习 算法
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
|
4天前
|
机器学习/深度学习 算法 Python
使用Python实现强化学习算法
使用Python实现强化学习算法
15 1
使用Python实现强化学习算法
|
4天前
|
算法
Copula 算法建模相依性分析股票收益率时间序列案例
Copula 算法建模相依性分析股票收益率时间序列案例
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
18小时前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
18 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
2天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
4天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。