Video-LLaMa:利用多模态增强对视频内容理解

简介: 在数字时代,视频已经成为一种主要的内容形式。但是理解和解释视频内容是一项复杂的任务,不仅需要视觉和听觉信号的整合,还需要处理上下文的时间序列的能力。本文将重点介绍称为video - llama的多模态框架。Video-LLaMA旨在使LLM能够理解视频中的视觉和听觉内容。论文设计了两个分支,即视觉语言分支和音频语言分支,分别将视频帧和音频信号转换为与llm文本输入兼容的查询表示。

video - llama结合了视频中的视觉和听觉内容,可以提高语言模型对视频内容的理解。他们提出了一个视频Q-former来捕捉视觉场景的时间变化,一个音频Q-former来整合视听信号。该模型在大量视频图像标题对和视觉指令调优数据集上进行训练,使视觉和音频编码器的输出与LLM的嵌入空间对齐。作者发现video - llama展示了感知和理解视频内容的能力,并根据视频中呈现的视觉和听觉信息产生有意义的反应。

Video-LLaMa的核心组件

1、Video Q-former:一个动态的视觉解释器

Video Q-former是video - llama框架的关键组件。它旨在捕捉视觉场景中的时间变化,提供对视频内容的动态理解。视频Q-former跟踪随时间的变化,以一种反映视频演变性质的方式解释视觉内容。这种动态解释为理解过程增加了一层深度,使模型能够以更细致入微的方式理解视频内容。

VL分支模型:ViT-G/14 + BLIP-2 Q-Former

  • 引入了一个两层视频Q-Former和一个帧嵌入层(应用于每帧的嵌入)来计算视频表示。
  • 在Webvid-2M视频标题数据集上训练VL分支,并完成视频到文本的生成任务。还将图像-文本对(来自LLaVA的约595K图像标题)添加到预训练数据集中,以增强对静态视觉概念的理解。
  • 预训练后,使用MiniGPT-4, LLaVA和VideoChat的指令调优数据进一步微调我们的VL分支。

2、Audio Q-former:视听集成

Audio Q-former是Video-LLaMa框架的另一个重要组件。它集成了视听信号,确保模型完整地理解视频内容。Audio Q-former同时处理和解释视觉和听觉信息,增强对视频内容的整体理解。这种视听信号的无缝集成是Video-LLaMa框架的一个关键特征,它在其有效性中起着至关重要的作用。

  • AL分支(音频编码器:ImageBind-Huge)
  • 引入两层音频Q-Former和音频段嵌入层(应用于每个音频段的嵌入)来计算音频表示。
  • 由于使用的音频编码器(即ImageBind)已经跨多个模态对齐,所以只在视频/图像指令数据上训练AL分支,只是为了将ImageBind的输出连接到语言解码器。

训练过程

模型是在视频图像标题对和视觉指令调优数据集的大量数据集上训练的。这个训练过程将视觉和音频编码器的输出与语言模型的嵌入空间对齐。这种对齐确保了高水平的准确性和理解力,使模型能够根据视频中呈现的视觉和听觉信息生成有意义的响应。

作者还提供了预训练的模型:

我们可以直接下载测试或者微调

影响和潜力

video - llama模型展示了一种令人印象深刻的感知和理解视频内容的能力。它基于视频中呈现的视觉和听觉信息。这种能力标志着视频理解领域的重大进步,为各个领域的应用开辟了新的可能性。

例如,在娱乐行业,Video-LLaMa可用于为视障观众生成准确的语音描述。在教育领域,它可以用来创建交互式学习材料。在安全领域,它可以用来分析监控录像,识别潜在的威胁或异常情况。

论文和源代码在这里:

https://avoid.overfit.cn/post/491be8977ea04aaeb260918c04cc8dac

作者:TutorMaster

目录
相关文章
|
2月前
|
存储 编解码 监控
针对3-15分钟视频的抽帧策略:让Qwen2.5 VL 32B理解视频内容
针对3-15分钟视频,提出高效抽帧策略:通过每5-10秒定间隔或关键帧检测方法,提取30-100帧关键图像,结合时间均匀采样与运动变化捕捉,降低冗余,提升Qwen2.5 VL 32B对视频内容的理解效率与准确性。
|
4月前
|
人工智能 弹性计算 API
再不玩通义 VACE 模型你就过时了!一个模型搞定所有视频任务
介绍通义的开源模型在 ecs 或 acs 场景如何一键部署和使用,如何解决不同视频生成场景的问题。
|
4月前
|
人工智能 弹性计算 JSON
再不玩通义VACE模型你就过时了!一个模型搞定所有视频任务
阿里巴巴开源通义万相Wan2.1-VACE,业界功能最全的视频生成与编辑模型,支持文生视频、图像参考生成、视频重绘、局部编辑、背景延展等,统一模型实现多任务自由组合,轻量版本消费级显卡即可运行。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
559 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
6月前
|
人工智能 自然语言处理 算法
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
612 0
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
|
7月前
|
人工智能 算法 API
多模态模型卷王诞生!InternVL3:上海AI Lab开源78B多模态大模型,支持图文视频全解析!
上海人工智能实验室开源的InternVL3系列多模态大语言模型,通过原生多模态预训练方法实现文本、图像、视频的统一处理,支持从1B到78B共7种参数规模。
1159 6
多模态模型卷王诞生!InternVL3:上海AI Lab开源78B多模态大模型,支持图文视频全解析!
|
3月前
|
编解码 自然语言处理
通义万相开源14B数字人Wan2.2-S2V!影视级音频驱动视频生成,助力专业内容创作
今天,通义万相的视频生成模型又开源了!本次开源Wan2.2-S2V-14B,是一款音频驱动的视频生成模型,可生成影视级质感的高质量视频。
1003 29
|
5月前
|
机器学习/深度学习 人工智能 算法
通义OmniAudio大模型,让 AI 看懂 360° 视频,并“听”出对应的空间音频
OmniAudio 是一项突破性的空间音频生成技术,能够直接从 360° 视频生成 FOA(First-order Ambisonics)空间音频,为虚拟现实和沉浸式娱乐带来全新可能。通过自监督 coarse-to-fine 预训练和双分支视频表示微调,OmniAudio 在非空间音频质量和空间定位准确性上显著优于现有方法。项目包含超过 103,000 个视频片段的 Sphere360 数据集,支持高质量的模型训练与评估。代码、数据及论文均已开源,助力沉浸式体验技术发展。
743 63
|
6月前
|
人工智能 API 开发者
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
2380 41
|
5月前
|
机器学习/深度学习 编解码 缓存
通义万相首尾帧图模型一键生成特效视频!
本文介绍了阿里通义发布的Wan2.1系列模型及其首尾帧生视频功能。该模型采用先进的DiT架构,通过高效的VAE模型降低运算成本,同时利用Full Attention机制确保生成视频的时间与空间一致性。模型训练分为三个阶段,逐步优化首尾帧生成能力及细节复刻效果。此外,文章展示了具体案例,并详细说明了训练和推理优化方法。目前,该模型已开源。
818 9

热门文章

最新文章