通义万相首尾帧图模型一键生成特效视频!

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 本文介绍了阿里通义发布的Wan2.1系列模型及其首尾帧生视频功能。该模型采用先进的DiT架构,通过高效的VAE模型降低运算成本,同时利用Full Attention机制确保生成视频的时间与空间一致性。模型训练分为三个阶段,逐步优化首尾帧生成能力及细节复刻效果。此外,文章展示了具体案例,并详细说明了训练和推理优化方法。目前,该模型已开源。

案例展示

首帧

image.png

尾帧

image.png

提示词:“黑暗的环境,一群人站成一列,背对镜头,站在一束光前,镜头上移,俯拍出光源全貌。”

image.png

首帧

image.png

尾帧

image.png

提示词:“漫画风格,黑暗中,一个男人正在看向一束光,镜头逐渐拉远,展现出四周都是楼梯的环境全貌。”

image.png

image.png

模型架构

阿里通义发布的 Wan2.1 系列模型,采用了先进的 DiT 架构,在技术上实现了多项突破。其中,高效的视频压缩 VAE 模型显著降低了运算成本,让高清视频生成更加高效且经济。同时,模型的Transformer部分基于主流的视频DiT结构,通过Full Attention机制精准捕捉长时程的时空依赖关系,确保了生成视频在时间与空间上的高度一致性。

image.png

通义万相模型结构图

本次发布的首尾帧生视频模型在基础架构模型上,引入了额外的条件控制分支,用户输入的首帧和尾帧作为控制条件,通过这一分支实现了流畅且精准的首尾帧变换。具体而言,首帧与尾帧同若干零填充的中间帧拼接,构成控制视频序列。该序列进一步与噪声及掩码(mask)进行拼接,最终作为扩散变换模型(DiT)的输入。

此外,为实现画面稳定性控制,通义万相首尾帧生视频模型提取了首帧和尾帧的 CLIP 语义特征,并通过交叉注意力机制(Cross-Attention Mechanism)将其注入到 DiT 的生成过程中。

image.png

万相首尾帧模型架构图

训练及推理优化

万相首尾帧生视频模型采用了基于线性噪声轨迹的流匹配(Flow Matching)方法。在训练阶段,对于文本与视频编码模块,我们采用了数据并行(DP)与完全分片数据并行(FSDP)相结合的分布式策略;对于扩散变换模型(DiT)模块,我们运用了数据并行(DP)、完全分片数据并行(FSDP)、环形注意力机制(RingAttention)以及Ulysses混合的并行策略。这些并行策略使得模型能够支持分辨率为720p、时长为5秒的视频切片训练。

在推理阶段,为了在有限内存资源的条件下支持高清视频推理,通义万相首尾帧生视频模型分别采用了模型切分策略以及序列并行策略。此外,通义万相首尾帧生视频模型采用了效果无损的步骤间缓存和CFG cache方法,以及在部分层(如qkvo投影层和前馈网络FFN)中使用FP8 GEMM运算,同时实现了FlashAttention3 INT8与FP8混合算子以对注意力机制部分进行8比特量化。在确保推理效果无损的前提下,这些优化措施显著缩短了推理时间。

数据驱动训练过程

模型的训练分为三个阶段,逐步对能力进行提升:

  • 第一阶段:使用与基模型相同的数据集,在480p分辨率下进行图生视频、任意位置插帧、视频续写等任务的混合训练,帮助模型掌握有效的掩码(mask)机制。
  • 第二阶段:构建专门用于首尾帧模式的训练数据,筛选出首尾帧差异较大的视频片段,在480p分辨率下专注于优化首尾帧生成能力。
  • 第三阶段:采用高精度数据集,在720p分辨率下完成最终训练,确保生成视频的细节复刻与动作流畅性达到最佳水平。


基于通义万相首尾帧生视频模型的强大能力,它不仅能完美复刻输入图像的细节,还能生成具有生动真实动作的视频。目前,通义万相首尾帧生视频模型已同步在GitHub开源。

如果有需要了解Wan2.1具体技术详情信息,可以👉 查看Wan2.1技术资料

⛳如果还想要了解更多通义大模型的模型详细信息以及直接进入体验,可以点击🔗https://www.aliyun.com/product/tongyi直接进入查看和体验哦~~

也可以关注一下通义大模型的公众号,后续有新的产品动态都会在内发布。

通义大模型公众号二维码.png


相关文章
|
1月前
|
文字识别 算法 语音技术
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
274 23
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
151 6
|
2月前
|
人工智能 安全 API
用Qwen Code,体验全新AI编程——高效模型接入首选ModelGate
Qwen Code 是通义千问推出的AI编程助手,支持自然语言编程与智能代码生成,大幅提升开发效率。结合 ModelGate,可实现多模型统一管理、安全调用,解决API切换、权限控制、稳定性等问题,是Claude Code的理想国产替代方案。
|
2月前
|
存储 人工智能
想让小模型‘偷师’大模型,如何选择合适的知识蒸馏技术?
本文三桥君围绕知识蒸馏技术展开。在人工智能领域,训练大模型面临挑战,知识蒸馏让小模型 “偷师” 大模型。文中介绍其两阶段(预训练、后训练 / 微调)及三种常用技术(软标签、硬标签、协同蒸馏),总结优缺点,助你理解应用该技术。
91 0
|
2月前
|
人工智能 JavaScript 安全
一文教你高效集成Qwen Code与ModelGate千万免费Toknn模型网关平台
本文详解如何高效集成Qwen Code与ModelGate模型网关平台,涵盖环境搭建、API配置、代码生成等关键步骤,助你实现智能编程与多模型管理,大幅提升AI开发效率。
|
2月前
|
JSON 算法 安全
1688图片搜索逆向工程与多模态搜索融合实践——基于CLIP模型的特征向
本文介绍了通过逆向工程分析实现图片搜索的技术方案,包括请求特征捕获、签名算法破解及多模态搜索的实现。利用CLIP模型提取图像特征,并结合Faiss优化相似度计算,提升搜索效率。最后提供完整调用示例,模拟实现非官方API的图片搜索功能。