python opencv图像处理(三)

简介: python opencv图像处理(三)

图像属性、图像感兴趣ROI区域及通道处理


1.图像属性


1.1形状:shape


图像的形状可以通过 shape 关键字进行获取,使用 shape 关键的后,获取的信息包括行数、列数、通道数的元祖。

需要注意的是,如果是灰度图片,只会返回图像的行数和列数,而彩色图片才会图像的行数、列数和通道数。

实例如下:


import cv2 as cv
# 读取彩色图片
color_img = cv.imread("data.jpg", cv.IMREAD_ANYCOLOR)
print(color_img.shape)
# 结果打印
(310, 560, 3)
# 读取灰度图片
gray_img = cv.imread("data.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img.shape)
# 结果打印
(310, 560)

1.2像素数量:size


图像的像素数量可以通过关键字 size 进行获取。

同样需要注意的是,灰度图片的像素数量是要小于彩色图片的,具体的关系是 1/3 。


import cv2 as cv
# 读取彩色图片
color_img = cv.imread("data.jpg", cv.IMREAD_ANYCOLOR)
print(color_img.size)
# 结果打印
520800
# 读取灰度图片
gray_img = cv.imread("data.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img.size)
# 结果打印
173600


1.3图像类型-dtype


图像类型是通过关键字 dtype 获取的,通常返回 uint8 ,这个属性在彩色图片和灰度图片中是保持一致的。

注意 dtype 在调试时非常重要,因为 OpenCV-Python 代码中的大量错误是由无效的数据类型引起的。


import cv2 as cv
# 读取彩色图片
color_img = cv.imread("data.jpg", cv.IMREAD_ANYCOLOR)
print(color_img.dtype)
# 结果打印
uint8
# 读取灰度图片
gray_img = cv.imread("data.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img.dtype)
# 结果打印
uint8


2.获取图像感兴趣ROI区域


ROI(Region of Interest)表示感兴趣区域。


它是指从被处理图像以方框、圆形、椭圆、不规则多边形等方式勾勒出需要处理的区域。可以通过各种算子(Operator)和函数求得感兴趣ROI区域,并进行图像的下一步处理,被广泛应用于热点地图、人脸识别、图像分割等领域。


如果我们要对于图像中的眼睛检测,首先对整个图像进行人脸检测。在获取人脸图像时,我们只选择人脸区域,搜索其中的眼睛,而不是搜索整个图像。它提高了准确性(因为眼睛总是在面部上:D )和性能(因为我们搜索的区域很小)。


我们通过像素矩阵可以直接得到 ROI 区域,如: img[200:400, 200:400] 。


比如下面这个示例我们获取小姐姐的脸,然后再把它显示出来:


import cv2 as cv
img = cv.imread("data.jpg", cv.IMREAD_UNCHANGED)
face = img[0:175, 200:420]
#前一个是宽,后一个是长
# 原始图像显示
cv.imshow("demo", img)
# 小姐姐的脸显示
cv.imshow("face", face)
#等待显示
cv.waitKey(0)
cv.destroyAllWindows()


它的结果如下:

如果我们要把这两张图像合成一张图像,可以对图像进行区域赋值:


import cv2 as cv
img = cv.imread("data.jpg", cv.IMREAD_UNCHANGED)
# 获取 ROI 区域
face = img[0:175, 200:420]
# 图像赋值
img[0:165, 0:160] = face
# 原始图像显示
cv.imshow("demo", img)
#等待显示
cv.waitKey(0)
cv.destroyAllWindows()


结果如下:


3.拆分和合并图像通道


3.1拆分图像通道


有些时候,我们需要分别处理图像的 B,G,R 通道。的通道,用 PS 抠过图的人应该都清楚抠图的时候可以使用单通道进行抠图操作。

将图像的通道拆分出来可以使用 split() 函数,如下:


import cv2 as cv
img = cv.imread("data.jpg", cv.IMREAD_UNCHANGED)
#拆分通道
b, g, r = cv.split(img)
# 分别显示三个通道的图像
cv.imshow("B", b)
cv.imshow("G", g)
cv.imshow("R", r)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()


20210623224843870.png


可以看到,三个通道的图像看起来都是灰白色的,这个玩过 PS 的人应该都很熟悉。

除了使用 split() 函数获取图像通道,还可以通过索引进行获取,代码如下:


b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]


如果需要将所有红色像素都设置为零,无需先拆分通道,索引更快:


img[:, :, 2] = 0
• 1


注意: split() 函数是一项耗时的操作(就时间而言)。因此,仅在必要时才这样做。否则请进行Numpy索引。


3.2合并图像通道


合并图像通道我们使用函数 merge() ,示例如下:


import cv2 as cv
img = cv.imread("data.jpg", cv.IMREAD_UNCHANGED)
# 拆分通道
b, g, r = cv.split(img)
# 合并图像通道
m = cv.merge([r, g, b])
cv.imshow('merge', m)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()


结果如下:

20210623225208480.png


这里如果是按照 [r, g, b] 进行图像通道合并,小姐姐就会变身成为岚姐,因为 OpenCV 是按照 BGR 读取的,如果想要显示会原图,合并的时候也按照 [b, g, r] 合并即可。


如果我们想要做一个真正的岚姐,可以只提取 B 颜色通道,其余两个 G 、 R 通道全部设置为 0 ,这样,我们就获得了一个真正的岚姐(整个图像只有蓝色通道),代码如下:


import cv2 as cv
import numpy as np
# 读取图片
img = cv.imread("data.jpg", cv.IMREAD_UNCHANGED)
rows, cols, chn = img.shape
# 拆分通道
b = img[:, :, 0]
g = np.zeros((rows,cols), dtype=img.dtype)
r = np.zeros((rows,cols), dtype=img.dtype)
# 合并图像通道
m = cv.merge([b, g, r])
cv.imshow('merge', m)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()


结果下:

20210623225634690.png

相关文章
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
600 7
基于qt的opencv实时图像处理框架FastCvLearn实战
|
10月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
416 20
|
6月前
|
人工智能 算法 计算机视觉
Python 图像处理技巧
本文介绍了Python图像处理中需要掌握的15个基本技能,涵盖图像读取与保存、颜色空间转换、裁剪与调整大小、滤波与平滑、边缘检测、阈值处理、形态学操作、直方图处理、特征检测与描述、图像配准与特征匹配、轮廓检测与分析、图像分割、模板匹配、透视变换与仿射变换以及傅里叶变换等内容。通过OpenCV、Pillow和Matplotlib等库实现相关功能,为图像处理提供了全面的基础指导。
209 0
|
9月前
|
监控 Java 计算机视觉
Python图像处理中的内存泄漏问题:原因、检测与解决方案
在Python图像处理中,内存泄漏是常见问题,尤其在处理大图像时。本文探讨了内存泄漏的原因(如大图像数据、循环引用、外部库使用等),并介绍了检测工具(如memory_profiler、objgraph、tracemalloc)和解决方法(如显式释放资源、避免循环引用、选择良好内存管理的库)。通过具体代码示例,帮助开发者有效应对内存泄漏挑战。
474 1
|
10月前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
478 10
|
10月前
|
机器学习/深度学习 算法 数据可视化
Python的计算机视觉与图像处理
本文介绍了Python在计算机视觉和图像处理领域的应用,涵盖核心概念、算法原理、最佳实践及应用场景。重点讲解了OpenCV、NumPy、Pillow和Matplotlib等工具的使用,并通过代码实例展示了图像读写、处理和可视化的方法。实际应用包括自动驾驶、人脸识别、物体检测等。未来趋势涉及深度学习、边缘计算和量子计算,同时也讨论了数据不足、模型解释性和计算资源等挑战。
529 2
|
计算机视觉 开发者 Python
利用Python进行简单的图像处理
【10月更文挑战第36天】本文将引导读者理解如何使用Python编程语言和其强大的库,如PIL和OpenCV,进行图像处理。我们将从基本的图像操作开始,然后逐步深入到更复杂的技术,如滤波器和边缘检测。无论你是编程新手还是有经验的开发者,这篇文章都将为你提供新的视角和技能,让你能够更好地理解和操作图像数据。
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
390 7
|
计算机视觉 Python
python利用pyqt5和opencv打开电脑摄像头并进行拍照
本项目使用Python的PyQt5和OpenCV库实现了一个简单的摄像头应用。用户可以通过界面按钮打开或关闭摄像头,并实时预览视频流。点击“拍照”按钮可以捕捉当前画面并保存为图片文件。该应用适用于简单的图像采集和处理任务。
809 0
python利用pyqt5和opencv打开电脑摄像头并进行拍照
|
机器学习/深度学习 计算机视觉 Python
opencv环境搭建-python
本文介绍了如何在Python环境中安装OpenCV库及其相关扩展库,包括numpy和matplotlib,并提供了基础的图像读取和显示代码示例,同时强调了使用Python虚拟环境的重要性和基本操作。

推荐镜像

更多