二分查找【多种方法+图解】
前言
介绍以及简单思路介绍
第一种解法,[left,right]区间
第二种解法,[left,right)区间
递归解法
前言
二分查找其实是一个十分容易理解的方法,在很多人思路里都知道先这个…再那个…,其实二分查找也有许多细节需要去细细分析
介绍以及简单思路介绍
二分查找是对于一个有序数组进行查找,如果数组无序,可以通过最简单的冒泡排序去排序
1找到数组的中间位置
检查中间位置的数组是否与要查找的数据key相等
a: 相等,就找到,打印下标跳出循环
b: key<arr[mid],则key可能在arr[mid]的左半侧,继续到左半侧进行二分查找
c: key》arr[mid],则key可能在arr[mid]的右半侧,继续到右半侧进行二分查找
如果找到,打印下标,否则继续,直到区间中没有元素时,说明key不在集合中
可见这里的中间值是一个十分重要的值,对于求这个中间的值还有一个小细节:
left为数组左下标,right为数组右下标
提到求中间值,我们第一时刻就会想到:int mid = (left+right)/2,这样在一般情况下是没有问题的
但是int类型是有它的范围的,有可能两个int类型的值相加的值就会超过int的最大范围值,也就是溢出
所以这里我们最好这样写:int mid = left + (right - left) / 2,这样就会避免溢出,其实把这个式子进行通分,就会得出(left+right)/2这个式子,他们的本质实际是一样的,只是后者避免溢出而已
接下来有两种解法,我们要注意三点:
right的右半侧区间取值,决定了后续的写法
while循环条件是否有等号
更改right和left的边界时,是否要+1和-1
第一种解法,[left,right]区间
int main() { int arr[] = { 1,2,3,4,5,6,7,8,9,10 }; int key = 0; scanf("%d" ,&key); int left = 0; int right = sizeof(arr) / sizeof(arr[1]) - 1; while (left <= right) //right位置有元素,要添加=号 { int mid = left + (right - left) / 2; if (arr[mid] > key) { right = mid - 1; } else if (arr[mid] < key) { left = mid + 1; } else { printf("找到了,下标是:%d\n", mid); break; } } if (left > right) { printf("找不到\n"); } return 0; }
在while的循环条件是left <= right,就是哪怕left==right时,也会再循环一次
如果情况如下图时,也会再有一次循环去得到mid的值,如果判断条件是left<right时,则下图的情况则会退出循环,找不到要找的值
在改变left和right的边界时,如果arr[mid] > key就·right = mid - 1若arr[mid] < key,就left = mid + 1这很容易理解,这也是人们通常最容易想出的一个二分查找
下面做一个例子
在{1,5,6,10,15,20,30,35}中,查找20
、
arr[mid]==key==20查找成功
第二种解法,[left,right)区间
int main() { int arr[] = { 1,2,3,4,5,6,7,8,9,10 }; int key = 0; scanf("%d", &key); int left = 0; int right = sizeof(arr) / sizeof(arr[1]); while (left < right) { int mid = left + (right - left) / 2; if (arr[mid] > key) { right = mid; } else if (arr[mid] < key) { left = mid + 1; } else { printf("找到了,下标是:%d\n", mid); break; } } if (left >= right) { printf("找不到\n"); } return 0; }
要注意的是:这里的right的初始值为sizeof(arr) / sizeof(arr[1])为数组的长度,实际上是数组最后一个的下标的下一位
这里的while中的判断语句是left < right,若arr[mid] < key,就left = mid + 1这里和上一个解法相同,arr[mid] > key 就right =mid这里与上一解法不同
递归解法
void find(int* arr, int n, int left, int right) { if (left <= right) { int mid = left+(right-left)/2; if (n == arr[mid]) { printf("找到了%d它在下标%d处",n,mid); } else if (n > arr[mid]) { find(arr, n, mid + 1, right); } else { find(arr, n, left, mid - 1); } } if (left > right) { printf( "没找到"); } } int main() { int arr[10] = { 5,8,10,26,74,100,102,120,136,180}; int len = sizeof(arr) / sizeof(arr[0]); int n1 = 0; int left = 0; int right = len - 1; printf("输入你想要查找的数\n"); scanf("%d",&n1); find(arr, n1, left, right); return 0; }
这里原理和解法一相同,这里不多介绍