YOLOv7默默更新了Anchor-Free | 无痛再涨1.4个mAP

简介: YOLOv7默默更新了Anchor-Free | 无痛再涨1.4个mAP

YOLOv7-u6分支的实现是基于Yolov5和Yolov6进行的。并在此基础上开发了Anchor-Free方法。所有安装、数据准备和使用与Yolov5相同,大家可以酌情尝试,如果电费不要钱,那就不要犹豫了!!!


先看原始的YOLOv7的精度


当时原始版本就是无敌的存在,YOLOv7的base版本就有51.2的精度了!!!


再看Anchor-Free版本YOLOv7的精度


再看原作复现的Anchor-Free版本,相对于原始版本的51.2的精度,分别提升了1.1个点和1.4个点(使用了albumentation数据增强),可以看出还是很给力的结构。


架构改进部分


其实,关于复现的YOLOv7-u6(Anchor-Free),Backbone和Neck部分是没有发生变化的,下面看一下Head部分的变化。

1、YOLOv7的Anchor-Base Head

通过下图的YAML知道,YOLOv7的head使用了重参结构,并且也加入了隐藏知识Trick的加入。

image.png

2、YOLOv7的Anchor-Free Head

去除了RepConv卷积,使用了最为基本的Conv模块,同时检测头换为了YOLOv6的Head形式,同时加入了IDetect的隐藏知识Implicit层思想。

3、IV6Detect的实现如下

class IV6Detect(nn.Module):
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init
    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max(ch[0] // 4, 16), max(ch[0], self.no - 4)  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        # DFL层
        self.dfl = DFL(self.reg_max)
        # Implicit层
        self.ia2 = nn.ModuleList(ImplicitA(x) for x in ch)
        self.ia3 = nn.ModuleList(ImplicitA(x) for x in ch)
        self.im2 = nn.ModuleList(ImplicitM(4 * self.reg_max) for _ in ch)
        self.im3 = nn.ModuleList(ImplicitM(self.nc) for _ in ch)
    def forward(self, x):
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.im2[i](self.cv2[i](self.ia2[i](x[i]))), self.im3[i](self.cv3[i](self.ia3[i](x[i])))), 1)
        box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
        if self.training:
            return x, box, cls
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, (x, box, cls))
    def bias_init(self):
        m = self  # self.model[-1]  # Detect() module
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)


关于损失函数与样本匹配的穿搭


一句话吧,其实就是YOLOv8本来的样子,也可能YOLOv8是原来YOLOv7-u6本来的样子。使用了TaskAligned Assigner,BCE Loss、CIOU Loss以及DFL Loss。可以说是标准搭配了!!!

class ComputeLoss:
    def __init__(self, model, use_dfl=True):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters
        # Define criteria
        # 分类损失
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets
        # Focal loss
        g = h["fl_gamma"]  # focal loss gamma
        if g > 0:
            BCEcls = FocalLoss(BCEcls, g)
        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.BCEcls = BCEcls
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.device = device
        # 正负样本匹配
        self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
                                            num_classes=self.nc,
                                            alpha=float(os.getenv('YOLOA', 0.5)),
                                            beta=float(os.getenv('YOLOB', 6.0)))
        # 回归损失函数
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
        self.proj = torch.arange(m.reg_max).float().to(device)  # / 120.0
        self.use_dfl = use_dfl


参考


[1].https://github.com/WongKinYiu/yolov7/tree/u6.

相关文章
|
人工智能 自然语言处理 安全
从 ChatGPT 到 AI 大模型私有化部署,为什么企业需要私有化专属大模型?
目前,大模型已经能够切实的影响到我们每个人的工作、学习、生活,赋能千行万业,但是开放的大模型却无法很好的适应企业或单位的内部需要,为此,此处研究并提出为什么企业需要私有化大模型,并探讨私有化大模型的优势和挑战,同时本文也举出了一些实践落地的例子,希望能给读者带来一些思考和启发。
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
2803 0
|
12月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
9月前
|
机器学习/深度学习 资源调度 算法
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
3344 6
|
机器学习/深度学习 算法 开发工具
【YOLOv8量化】普通CPU上加速推理可达100+FPS
【YOLOv8量化】普通CPU上加速推理可达100+FPS
1912 0
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
2434 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
3008 1
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
18959 0
|
机器学习/深度学习 异构计算
【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck
【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck
|
Ubuntu 关系型数据库 MySQL
Ubuntu18.04.6安装mysql5.7
Ubuntu18.04.6安装mysql5.7
363 0