使用Gradio快速搭建一个聊天机器人

简介: 使用Gradio快速搭建一个聊天机器人

Gradio 简介

如果对 Gradio 库不太了解的,可以先参考一下:Gradio快速入门

使用 Gradio 这个 Python 库来开发这个聊天机器人图形界面有如下几个好处:

  • 之前的的代码都是用 Python 实现的,不需要去学习前端相关框架了。
  • Gradio 渲染出来的界面可以直接在 Jupyter Notebook 里面显示出来。
  • 可以免费把 Gradio 的应用部署到 HuggingFace 上,特别方便我们的系统演示给其他人看。

三步完成图形界面开发

  1. 定义好了 system 这个系统角色的提示语,创建了一个 Conversation 对象。参考:
  2. 定义了一个 answer 方法,简单封装了一下 Conversation 的 ask 方法。主要是通过 history 维护了整个会话的历史记录。并且通过 responses,将用户和 AI 的对话分组。然后将它们两个作为函数的返回值。这个函数的签名是为了符合 Gradio 里 Chatbot 组件的函数签名的需求。
  3. 通过一段 with 代码,创建对应的聊天界面。Gradio 提供了一个现成的 Chatbot 组件,我们只需要调用它。

代码如下:

importgradioasgrprompt="""你是一个大数据和AI领域的专家,用中文回答大数据和AI的相关问题。你的回答需要满足以下要求:1. 你的回答必须是中文2. 回答限制在100个字以内"""conv=Conversation(prompt, 6)
defanswer(question, history=[]):
history.append(question)
message=conv.ask(question)
history.append(message)
responses= [(u,b) foru,binzip(history[::2], history[1::2])]
print(responses)
returnresponses, historywithgr.Blocks(css="#chatbot{height:300px} .overflow-y-auto{height:500px}") asrxbot:
chatbot=gr.Chatbot(elem_id="chatbot")
state=gr.State([])
withgr.Row():
txt=gr.Textbox(show_label=False, placeholder="请输入你的问题").style(container=False)
txt.submit(answer, [txt, state], [chatbot, state])
rxbot.launch()

部署到 HuggingFace

HuggingFace 简介

HuggingFace 的官方网站:https://huggingface.co 我们可以看到如下一些资源。

  • Datasets:数据集,以及数据集的下载地址
  • Models:各个预训练模型
  • Docs:文档
  • Spaces:发布的一些应用,这次就使用这个菜单进行程序部署

注册帐号

需要注册一个 HuggingFace 的账号,点击左上角的头像,然后点击 “+New Space” 创建一个新的项目空间。

创建 Space

在接下来,给 Space 取一个名字【1】,然后在 Select the Space SDK 里面,选择第二个 Gradio【2】。硬件选择免费的【3】,项目这里选择 public【4】,让其他人也能够看到。最后点击创建【5】。

发布代码

创建成功后,会跳转到 HuggingFace 的 App 界面。里面给了如何 Clone 当前的 space,然后提交代码部署 App 的方式。如下图:

按照上面的示例,需要通过 Git 把当前 space 下载下来,然后提交两个文件

  • app.py 包含了我们的 Gradio 应用;
  • requirements.txt 包含了这个应用依赖的 Python 包。

代码提交之后,HuggingFace 的页面会自动刷新

设置环境变量

代码里是通过环境变量获取 OpenAI 的 API Key 的,所以还要在这个 HuggingFace 的 Space 里设置一下这个环境变量。如下图:

设置完成之后,需要手动点击一下 Restart this space 确保这个应用重新加载一遍,以获取到新设置的环境变量。

效果体验

到此,再切换到 APP Tab,尝试下聊天机器人是否可以正常工作了,如下图:

遇到的问题

Q:提交问题后,界面上没有返回对话内容,通过查看日志,发现如下错误:

AttributeError("module 'openai' has no attribute 'ChatCompletion'"))]

A:解决方案

在 requirements.txt 中指定 openai 库的版本号

openai==0.27.0

Q:遇到访问限流的问题,日志如下:

A:解决方案

  1. 过会再试
  2. 通过使用 backoff 库,遇到 RateLimitError 的时候,按照指数级别增加等待时间,可以参考官网对限流的说明:https://platform.openai.com/docs/guides/rate-limits/overview

聊天APP分享到自己的网站上

导入代码

通过在站点中添加以下脚本将 gradioJS 库导入到站点中

<scripttype="module"src="https://gradio.s3-us-west-2.amazonaws.com/3.28.1/gradio.js"></script><gradio-appsrc="https://yezhiwei-chatbot.hf.space"></gradio-app>

获取方式

通过以下方式获取上面的代码,如下图:

集成效果

体验方式

访问 https://yezhwi.github.io/ 访问,进入二级页面(如:https://yezhwi.github.io/ai/2023/03/27/3%E5%88%86%E9%92%9F%E9%83%A8%E7%BD%B2ChatGPT%E6%9C%8D%E5%8A%A1%E7%AB%AF%E5%BA%94%E7%94%A8-%E9%99%84%E4%BB%A3%E7%A0%81/),拖到最下方,即可体验:


相关文章
|
8月前
大模型应用开发-LangChain入门教程
大模型应用开发-LangChain入门教程
275 0
|
8月前
|
机器学习/深度学习 人工智能 Go
【AI绘画】Gradio工具
【AI绘画】Gradio工具
165 1
|
机器学习/深度学习 数据采集 自然语言处理
如何搭建自己的chatgpt
如何搭建自己的chatgpt
388 0
基于Gradio的GPT聊天程序
这篇文章介绍了如何使用Gradio库创建一个基于ChatGPT的聊天程序,包括详细的代码实现和所需的依赖库。
基于Gradio的GPT聊天程序
|
5月前
|
存储 人工智能 缓存
langchain 入门指南 - 让 AI 记住你说过的话
langchain 入门指南 - 让 AI 记住你说过的话
154 1
|
5月前
|
机器学习/深度学习 人工智能 Python
|
5月前
|
数据采集 存储 自然语言处理
LangChain实战:构建自定义问答助手
【8月更文第4天】随着自然语言处理(NLP)技术的发展,构建能够理解和回答复杂问题的问答助手变得越来越容易。LangChain 是一个强大的框架,它为开发人员提供了一套工具和模式,用于构建和部署基于语言模型的应用程序。本文将引导您通过 LangChain 构建一个自定义的问答助手,该助手可以理解并回答关于特定领域的复杂问题。
132 1
|
5月前
|
JSON Go 网络架构
langchain 入门指南 - 自动选择不同的大模型
langchain 入门指南 - 自动选择不同的大模型
177 0
|
5月前
|
机器学习/深度学习 存储 测试技术
langchain 入门指南 - 如何做好 Prompt
langchain 入门指南 - 如何做好 Prompt
61 0
|
5月前
|
API
langchain 入门指南(二)- 如何跟大模型对话
langchain 入门指南(二)- 如何跟大模型对话
222 0