【Java基础】二分搜索树实现 - 完整代码

简介: 二分搜索树中一般不考虑值相等的情况(元素不重复)JDK中的搜索树就不存在相同的值

 目录

1.二分搜索树:

1.1 概念

1.2 重点操作

1.3 完整代码


1.二分搜索树:

1.1 概念

a.是个二叉树(每个节点最多有两个子节点)

b.对于这棵树中的节点的节点值

左子树中的所有节点值 < 根节点 < 右子树的所有节点值

二分搜索树中一般不考虑值相等的情况(元素不重复)JDK中的搜索树就不存在相同的值(TreeMap-key)

image.gif编辑

最大特点:也是判断是否是搜索树的方法

对该树进行中序遍历,就可以得到一个升序集合0 1 2 3 4 5 6 7 8 9

在一个有序区间上进行二分查找的时间复杂度? logn不断将集合/2/2 / 2 ==1为止logN

logN =》联想到"树"

1.2 重点操作

image.gif编辑

当删除58时,此节点左右子树都不为空

Hibbard Deletion 1962

在BST中删除一个左右子树都存在的节点

找到当前以58为根节点的前驱或者后继节点作为删除后的新节点

前驱:在以58为根的BST中最后一个小于58的节点->53

后继:在以58为根的BST中第一个大于58的节点->59

当我们使用后继节点时,先连removeMin(root.right),在连root.left

TreeNode successor = findMin(root.right);
successor.right = removeMin(root.right);
successor.left = root.left;

image.gif

1.3 完整代码

import java.util.NoSuchElementException;
/**
 * 基于整型的
 * 普通的二分搜索树
 */
public class BST {
    private class TreeNode{
        private int val;
        private TreeNode left;
        private TreeNode right;
        public TreeNode(int val) {
            this.val = val;
        }
    }
    private int size;
    private TreeNode root;
    /**
     * 向以root为根的BST中插入一个新的结点val
     * @param val
     */
    public void add(int val){
        root = add(root,val);
    }
    private TreeNode add(TreeNode root, int val) {
        if(root == null){
            //创建一个新节点
            TreeNode newNode = new TreeNode(val);
            size++;
            return newNode;
        }
        //左子树插入
        if(val < root.val){
            root.left = add(root.left,val);
        }
        //右子树插入
        if(val > root.val){
            root.right = add(root.right,val);
        }
        return root;
    }
    /**
     * 判断当前以root为根的BST中是否包含了val
     * @param val
     * @return
     */
    public boolean contains(int val){
        return contains(root,val);
    }
    private boolean contains(TreeNode root, int val) {
        if(root == null){
            return false;
        }
        if(val == root.val){
            //找到了
            return true;
        }else if(val < root.val){
            //递归左子树查找
            return contains(root.left,val);
        }else{
            //递归右子树查找
            return contains(root.right,val);
        }
    }
    /**
     * 找到最小值
     * @return
     */
    public int findMin(){
        //判空
        if(root == null){
            //抛出一个空指针异常
            throw new NoSuchElementException("root is empty! cannot find min");
        }
        TreeNode minNode = findMin(root);
        return minNode.val;
    }
    private TreeNode findMin(TreeNode root) {
        //当此节点左子树为空,说明此节点是最小值
        if(root.left == null){
            return root;
        }
        //递归访问左子树
        return findMin(root.left);
    }
    /**
     * 找到最大值
     * @return
     */
    public int findMax(){
        //判空
        if(root == null){
            throw new NoSuchElementException("root is empty! cannot find max");
        }
        TreeNode maxNode = findMax(root);
        return maxNode.val;
    }
    private TreeNode findMax(TreeNode root) {
        //当此节点右子树为空,说明此节点是最大值
        if(root.right == null){
            return root;
        }
        //递归访问右子树
        return findMax(root.right);
    }
    /**
     * 在当前BST中删除最小值节点,返回删除的最小值
     * @return
     */
    public int removeMin(){
        int min =findMin();
        root = removeMin(root);
        return min;
    }
    private TreeNode removeMin(TreeNode root) {
        if(root.left == null){
            TreeNode right = root.right;
            //找到最小值,删除节点
            root = root.left = null;
            size--;
            return right;
        }
        root.left = removeMin(root.left);
        return root;
    }
    /**
     * 在当前BST中删除最大值节点,返回删除的最大值
     * @return
     */
    public int removeMax(){
        int max = findMax();
        root = removeMax(root);
        return max;
    }
    //在当前以root为根的BST中删除最小值所在的节点,返回删除后的树根
    private TreeNode removeMax(TreeNode root) {
        if(root.right == null){
            TreeNode right = root.right;
            //找到最大值,删除节点
            root = root.right = null;
            size--;
            return right;
        }
        root.right = findMax(root.right);
        return root;
    }
    /**
     * 在当前以root为根节点的BST中删除值为val的节点
     * 返回删除后的新的根节点
     * @return
     */
    public void removeValue(int value){
        root = removeValue(root,value);
    }
    private TreeNode removeValue(TreeNode root, int value) {
        if(root == null){
            throw new NoSuchElementException("root is empty! cannot find remove");
        }else if(value < root.val){
            root.left = removeValue(root.left,value);
            return root;
        }else if(value > root.val){
            root.right = removeValue(root.right,value);
            return root;
        }else {
            //此时value == root.value
            if(root.left == null){
                //删除最小数
                TreeNode right = root.right;
                root = root.right = null;
                size--;
                return right;
            }
            if(root.right == null){
                //删除最大数
                TreeNode left = root.left;
                root = root.left =null;
                size--;
                return left;
            }
            //找到当前该删除节点的前驱或者后继节点作为删除后的新节点
            //当我们使用后继节点时,先连removeMin(root.right),在连root.left
            TreeNode successor = findMin(root.right);
            successor.right = removeMin(root.right);
            successor.left = root.left;
            return successor;
        }
    }
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        generateBSTString(root,0,sb);
        return sb.toString();
    }
    //直观打印,可以看到树的深度
    private void generateBSTString(TreeNode root, int height, StringBuilder sb) {
        if(root == null){
            sb.append(generateHeightString(height)).append("NULL\n");
            return;
        }
        sb.append(generateHeightString(height)).append(root.val).append("\n");
        generateBSTString(root.left,height+1,sb);
        generateBSTString(root.right,height+1,sb);
    }
    private String generateHeightString(int height) {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < height; i++) {
            sb.append("--");
        }
        return sb.toString();
    }
}

image.gif


相关文章
|
3天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
17 3
|
29天前
|
Java
java小工具util系列4:基础工具代码(Msg、PageResult、Response、常量、枚举)
java小工具util系列4:基础工具代码(Msg、PageResult、Response、常量、枚举)
50 24
|
10天前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
48 2
|
25天前
|
Java 编译器 数据库
Java 中的注解(Annotations):代码中的 “元数据” 魔法
Java注解是代码中的“元数据”标签,不直接参与业务逻辑,但在编译或运行时提供重要信息。本文介绍了注解的基础语法、内置注解的应用场景,以及如何自定义注解和结合AOP技术实现方法执行日志记录,展示了注解在提升代码质量、简化开发流程和增强程序功能方面的强大作用。
65 5
|
25天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
49 5
|
27天前
|
Java API 开发者
Java中的Lambda表达式:简洁代码的利器####
本文探讨了Java中Lambda表达式的概念、用途及其在简化代码和提高开发效率方面的显著作用。通过具体实例,展示了Lambda表达式如何在Java 8及更高版本中替代传统的匿名内部类,使代码更加简洁易读。文章还简要介绍了Lambda表达式的语法和常见用法,帮助开发者更好地理解和应用这一强大的工具。 ####
|
1月前
|
Java API Maven
商汤人像如何对接?Java代码如何写?
商汤人像如何对接?Java代码如何写?
39 5
|
1月前
|
Java
在Java中实现接口的具体代码示例
可以根据具体的需求,创建更多的类来实现这个接口,以满足不同形状的计算需求。希望这个示例对你理解在 Java 中如何实现接口有所帮助。
87 38
|
24天前
|
安全 Java API
Java中的Lambda表达式:简化代码的现代魔法
在Java 8的发布中,Lambda表达式的引入无疑是一场编程范式的革命。它不仅让代码变得更加简洁,还使得函数式编程在Java中成为可能。本文将深入探讨Lambda表达式如何改变我们编写和维护Java代码的方式,以及它是如何提升我们编码效率的。
|
29天前
|
Java
Java将OffsetDateTime格式化为 yyyy-MM-dd HH:mm:ss 如何写代码?
Java将OffsetDateTime格式化为 yyyy-MM-dd HH:mm:ss 如何写代码?
32 0