python机器学习从入门到高级:超参数调整(含详细代码)

简介: python机器学习从入门到高级:超参数调整(含详细代码)

Python机器学习之超参数调整

  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

在我们选择好一个模型后,接下来要做的是如何提高模型的精度。因此需要进行超参数调整,一种方法是手动调整超参数,直到找到超参数值的最佳组合。这将是一个非常复杂的工作,我们可以通过sklearn中的一些方法来进行搜索。我们所需要做的就是告诉它我们想用哪些超参数进行实验,以及尝试哪些值,然后它将使用交叉验证来评估所有可能的超参数值组合。

💮1 使用GridSearchCV

  • 这种方法就是通过不断搜索匹配选出最好的超参数

具体代码如下

# 导入所需库
import numpy as np
from sklearn import linear_model, datasets
from sklearn.model_selection import GridSearchCV
# 加载数据
iris = datasets.load_iris()
features = iris.data
target = iris.target
# 创建模型
logistic = linear_model.LogisticRegression()

logistic回归有两个参数,一个是正则化惩罚的方式L1,L2
还有一个是正则化系数C

penalty = ['l1', 'l2']
C = np.logspace(0, 4, 10)
hyperparameters = dict(C=C, penalty=penalty)
# 创建网格搜索对象
gridsearch = GridSearchCV(logistic, hyperparameters, cv=5)

默认情况下,在找到最佳超参数之后,GridSearchCV将使用最佳超参数和整个数据集重新训练模型

best_model = gridsearch.fit(features, target)

下面我们来看一下最优的具体超参数

best_model.best_estimator_.get_params()
{'C': 7.742636826811269,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'auto',
 'n_jobs': None,
 'penalty': 'l2',
 'random_state': None,
 'solver': 'lbfgs',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}


正则化系数取C:7.74,惩罚项选择L2正则化

best_model.predict(features)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])


🍁2.使用随机搜索选择模型

当您探索相对较少的组合时,网格搜索方法很好,如前一个示例中所示,但当超参数搜索空间较大时,通常最好使用randomizedsearchcv。该类的使用方式与GridSearchCVclass大致相同,但它不是尝试所有可能的组合,而是评估给定的通过在每次迭代中为每个HyperParameter选择一个随机值来计算随机组合的数量。这种方法有两个主要好处

  • 如果让随机搜索运行1000次迭代,这种方法将为每个超参数探索1000个不同的值(而不是网格搜索方法中每个超参数只有几个值)。
  • 只需设置迭代次数,就可以更好地控制要分配给hyperparametersearch的计算预算
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform
#c来自一个均匀分布
c = uniform(loc=0, scale=4)
hyperparameters = dict(C=c, penalty=penalty)
randomizedsearchCV = RandomizedSearchCV(logistic, hyperparameters, random_state=1, n_iter=100, cv=5)
best_model = randomizedsearchCV.fit(features, target)
best_model.best_estimator_.get_params()
{'C': 1.668088018810296,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'l1_ratio': None,
 'max_iter': 100,
 'multi_class': 'warn',
 'n_jobs': None,
 'penalty': 'l1',
 'random_state': None,
 'solver': 'warn',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}


可以看到此时最优超参数为C:1.67正则化方式选L1

🏵️3.从多种学习算法中选择最佳模型

from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
np.random.seed(10)
iris = datasets.load_iris()
pip = Pipeline([('classifier', RandomForestClassifier())])
search_space = [{'classifier':[LogisticRegression()],
                 'classifier__penalty': ['l1', 'l2'],
                 'classifier__C': np.logspace(0, 4, 10)},
                {'classifier': [RandomForestClassifier()],
                 'classifier__n_estimators':[10, 100, 1000],
                 'classifier__max_features':[1, 2, 3]}]
gridsearch = GridSearchCV(pip, search_space, cv=5)
best_model = gridsearch.fit(features, target)
best_model.best_estimator_.get_params()
{'memory': None,
 'steps': [('classifier', LogisticRegression(C=7.742636826811269))],
 'verbose': False,
 'classifier': LogisticRegression(C=7.742636826811269),
 'classifier__C': 7.742636826811269,
 'classifier__class_weight': None,
 'classifier__dual': False,
 'classifier__fit_intercept': True,
 'classifier__intercept_scaling': 1,
 'classifier__l1_ratio': None,
 'classifier__max_iter': 100,
 'classifier__multi_class': 'auto',
 'classifier__n_jobs': None,
 'classifier__penalty': 'l2',
 'classifier__random_state': None,
 'classifier__solver': 'lbfgs',
 'classifier__tol': 0.0001,
 'classifier__verbose': 0,
 'classifier__warm_start': False}


对于该数据集,上述结果表明使用logistic回归的效果比随机森林更好

本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!

相关文章
|
1天前
|
网络协议 网络架构 Python
Python 网络编程基础:套接字(Sockets)入门与实践
【5月更文挑战第18天】Python网络编程中的套接字是程序间通信的基础,分为TCP和UDP。TCP套接字涉及创建服务器套接字、绑定地址和端口、监听、接受连接及数据交换。UDP套接字则无连接状态。示例展示了TCP服务器和客户端如何使用套接字通信。注意选择唯一地址和端口,处理异常以确保健壮性。学习套接字可为构建网络应用打下基础。
18 7
|
2天前
|
数据采集 Python
matlab疲劳驾驶检测项目,Python高级面试framework
matlab疲劳驾驶检测项目,Python高级面试framework
|
2天前
|
Python
10个python入门小游戏,零基础打通关,就能掌握编程基础_python编写的入门简单小游戏
10个python入门小游戏,零基础打通关,就能掌握编程基础_python编写的入门简单小游戏
|
2天前
|
API Kotlin Python
Jetpack Compose for Desktop实现复杂的自动布局网格,熬夜整理蚂蚁金服Python高级笔试题
Jetpack Compose for Desktop实现复杂的自动布局网格,熬夜整理蚂蚁金服Python高级笔试题
|
2天前
|
Python
空间管理大师已上线!(2),Python高级工程师进阶学习】
空间管理大师已上线!(2),Python高级工程师进阶学习】
|
3天前
|
机器学习/深度学习 数据采集 自然语言处理
python函数参数的传递、带星号参数的传递,2024年大厂Python高级面试题分享
python函数参数的传递、带星号参数的传递,2024年大厂Python高级面试题分享
|
4天前
|
API 调度 开发者
探索Python中的异步编程:从基础到高级应用
【5月更文挑战第15天】 在现代软件开发中,异步编程已成为提升应用程序性能和用户体验的关键。本文将深入探讨Python中的异步编程概念,包括其基本工作原理、关键技术以及高级应用场景。我们将通过实例代码演示如何有效利用Python的异步特性,从而帮助读者构建更加高效和响应迅速的软件解决方案。
|
4天前
|
Python 索引 C语言
Python3从零基础到入门(2)—— 运算符-3
Python3从零基础到入门(2)—— 运算符
|
4天前
|
Python
Python3从零基础到入门(2)—— 运算符-2
Python3从零基础到入门(2)—— 运算符
Python3从零基础到入门(2)—— 运算符-2
|
4天前
|
Python C语言 存储
Python3从零基础到入门(2)—— 运算符-1
Python3从零基础到入门(2)—— 运算符
Python3从零基础到入门(2)—— 运算符-1