区间和算法的实现

简介: 区间和算法的实现

题目描述

此题第一次看确实没看懂,所以此处略作分析,为什么要离散化呢,因为存储的下标实在太大了,如果直接开这么大的数组,根本不现实,第二个原因,本文是数轴,要是采用下标的话,可能存在负值,所以也不能,所以有人可能会提出用哈希表,哈希表可以吗?答案也是不可以的,因为哈希表不能像离散化那样缩小数组的空间,导致我们可能需要从-e9遍历到1e9(此处的含义就是假如我们需要计算1e-9和1e9区间内的值,那我们需要从前到后枚举,无论该值是否存在),因为哈希表不能排序,所以我们一般不能提前知道哪些数轴上的点存在哪些不存在,所以一般是从负的最小值到正的最大值都枚举一遍,时间负责度太高,于是就有了本题的离散化。

离散化的本质,是映射,将间隔很大的点,映射到相邻的数组元素中。减少对空间的需求,也减少计算量。

其实映射最大的难点是前后的映射关系,如何能够将不连续的点映射到连续的数组的下标。此处的解决办法就是开辟额外的数组存放原来的数组下标,或者说下标标志,本文是原来上的数轴上的非连续点的横坐标。

此处的做法是是对原来的数轴下标进行排序,再去重,为什么要去重呢,因为本题提前考虑了前缀和的思想,其实很简单,就是我们需要求出的区间内的和的两端断点不一定有元素,提前加如需要求前缀和的两个端点,有利于我们进行二分搜索,其实二分搜索里面我们一般假定有解的,如果没解的话需要特判,所以提前加入了这些元素,从而导致可能出现重复元素。

本文你用于存储这个关系的数组是alls[N];特地说明下,为什么要开300000+10呢,因为我前面说过了提前考虑了前缀和的因素,加上了2*m个点,又因为怕出现数组越界,多加了10。什么时候会用完300000个空间呢,那就是无重复元素,外加n和m都是1e5次方的打下。

下一步就是写提前数轴点对应的映射后的数组的下标的函数课,此题用的是二分,log(n

+ 2 * m)
int find(int x)
{
int l = 0, r = alls.size() - 1;
while(l < r)
{
int mid = l + r >> 1;
if(alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1;
}

为什么返回r + 1,这是变相的让映射后的数组从1开始。此处描述映射后的数组下标对应的数值用的是a数组。

剩下的就是已经讲过的了,前缀后算法,本题的难点是理清楚这个映射关系。

算法1

(离散化) O((n+2∗m)log(n+2∗m))O((n+2∗m)log(n+2∗m))

C++ 代码

#include
#include
#include
using namespace std;
typedef pair<int, int> PII;
const int N = 300010;
int a[N], s[N];
int n, m;
vector alls;
vector add, query;
int find(int x)
{
int l = 0, r = alls.size() - 1;
while(l < r)
{
int mid = l + r >> 1;
if(alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1;
}
vector:: iterator unique(vector &a)
{
int j = 0;
for(int i = 0; i < a.size(); i ++)
if(!i || a[i] != a[i - 1])
a[j ++ ] = a[i];
return a.begin() + j;
}
int main()
{
cin >> n >> m;
for(int i = 0; i < n; i ++ )
{
    int x, c;
    cin >> x >> c;
    add.push_back({x, c});
    alls.push_back(x);
}
for(int i = 0; i < m; i ++ )
{
    int l, r;
    cin >> l >> r;
    query.push_back({l, r});
    alls.push_back(l);
    alls.push_back(r);
}
sort(alls.begin(), alls.end());
alls.erase(unique(alls), alls.end());
for(auto item : add)
{
    int x = find(item.first);
    a[x] += item.second;
}
for(int i = 1; i <= alls.size(); i ++ ) s[i] = s[i - 1] + a[i];
for(auto item : query)
{
    int l = find(item.first), r = find(item.second);
    cout << s[r] - s[l - 1] << endl;
}
return 0;

}


相关文章
|
19小时前
|
算法 测试技术 C++
【动态规划】【滑动窗口】【C++算法】 629K 个逆序对数组
【动态规划】【滑动窗口】【C++算法】 629K 个逆序对数组
|
19小时前
|
算法 测试技术 C#
【折半处理 二分查找】1755. 最接近目标值的子序列和
【折半处理 二分查找】1755. 最接近目标值的子序列和
【折半处理 二分查找】1755. 最接近目标值的子序列和
|
19小时前
|
C++
2589. 完成所有任务的最少时间(区间取点——贪心or线段树)
2589. 完成所有任务的最少时间(区间取点——贪心or线段树)
|
19小时前
|
算法
回溯-求出数组的所有子序列【学习算法】
回溯-求出数组的所有子序列【学习算法】
29 0
|
5月前
|
算法 测试技术 C#
C++ 算法:区间和的个数
C++ 算法:区间和的个数
|
7月前
|
算法 索引
算法:二分查找算法/朴素二分/查找区间左右端点二分
算法:二分查找算法/朴素二分/查找区间左右端点二分
|
11月前
|
算法
Manachar算法(马拉车算法):快速求取最长回文子串
求取最长回文子串的长度的最佳方法为 Manachar算法 ,俗称马拉车算法。常见的方法就是中心扩散法,但时间复杂度较高。
70 0
Manachar算法(马拉车算法):快速求取最长回文子串
区间选点(贪心)
这个题,虽然没有写过,但是我盲猜这个题肯定很经典
83 0
|
机器学习/深度学习 存储 算法
区间合并算法
区间合并算法
|
算法 C++
容斥原理算法的实现
容斥原理算法的实现
容斥原理算法的实现