Redis的数据持久化

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本篇文章介绍了 Redis 的数据持久化方案:AOF日志、RDB快照,以及 AOF 和 RDB 混合持久化

介绍 Redis 的数据持久化方案

Redis 的数据持久化主要有两大机制,AOF 日志和 RDB 快照。

  • AOF 持久化是通过保存 Redis 服务器所执行的写命令来记录数据库状态。
  • RDB 持久化是通过保存数据库中的键值对来记录数据库状态。

根据服务器是否启用了 AOF 持久化功能, 服务器载入数据时所使用的目标文件会有所不同:

  • 如果服务器启用了 AOF 持久化功能, 那么服务器使用 AOF 文件来还原数据库状态。
  • 如果服务器没有启用 AOF 持久化功能,那么服务器使用 RDB 文件来还原数据库状态。

AOF 和 RDB 的优劣局限

AOF 日志相比 RDB 快照的优势:

  • AOF 对系统的性能影响更小:AOF 只是追加日志文件,而 RDB 是对所以键值对的快照,因此一次 AOF 操作比 RDB 对系统的性能影响更小,速度比 RDB 要快,消耗的内存较少。

AOF 日志相比 RDB 快照的劣势:

  • AOF 载入文件的速度更慢:AOF 保存写命令,而 RDB 保存保存键值对来记录数据库状态,因此载入 AOF 文件的速度比载入 RDB 文件的速度更慢。
  • AOF 文件的体积更大:保存相同的数据库状态,AOF 文件比 RDB 文件的体积更大。

AOF 和 RDB 混合持久化

在 Redis4.0 后支持混合持久化方式,如果使用混合持久化:

  • 当服务器执行写命令后,Redis 会以 AOF 持久化方式将命令写回 incr.aof 文件。
  • 当进行 AOF 文件重写时,Redis 会以 RDB 持久化方式将当前数据库状态保存到名为 base.aof 文件,然后再将 AOF 重写缓冲区中的所有内容写入 incr.aof 文件。
  • 当 Redis 服务器重启后,将载入 base.aof 和 incre.aof 文件以还原数据库状态。
相关文章
|
16天前
|
NoSQL 安全 关系型数据库
Redis:持久化的两种方式
Redis持久化机制主要包括RDB和AOF两种方式。RDB通过生成数据快照进行持久化,支持手动或自动触发,具有加载速度快、文件紧凑等特点,但无法实时保存数据。AOF则记录每个操作命令,保障数据更安全,支持多种写入策略,并可通过重写机制优化文件大小。两者各有优劣,常结合使用以兼顾性能与数据安全。
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
8天前
|
存储 缓存 NoSQL
Redis持久化深度解析:数据安全与性能的平衡艺术
Redis持久化解决内存数据易失问题,提供RDB快照与AOF日志两种机制。RDB恢复快、性能高,但可能丢数据;AOF安全性高,最多丢1秒数据,支持多种写回策略,适合不同场景。Redis 4.0+支持混合持久化,兼顾速度与安全。根据业务需求选择合适方案,实现数据可靠与性能平衡。(238字)
|
5月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
319 67
|
4月前
|
存储 监控 NoSQL
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
117 9
|
8月前
|
存储 NoSQL 安全
Redis的两种持久化方式---RDB、AOF
通过本文的介绍,我们详细讲解了Redis的两种主要持久化方式:RDB和AOF。每种方式都有其独特的优缺点和适用场景。在实际应用中,可以根据具体需求选择合适的持久化方式,或者同时启用RDB和AOF,以达到最佳效果。希望本文能帮助您更好地理解和应用Redis的持久化机制,构建高效、可靠的数据存储解决方案。
605 79
|
4月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
270 0
|
7月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
7月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
7月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期

热门文章

最新文章