PyTorch:常见错误 inplace operation

简介: `inplace` 操作是 PyTorch 里面一个比较常见的错误,有的时候会比较好发现,但是有的时候同样类似的报错,会比较不好发现。

inplace 操作是 PyTorch 里面一个比较常见的错误,有的时候会比较好发现,例如下面的代码:

import torch
w = torch.rand(4, requires_grad=True)
w += 1
loss = w.sum()
loss.backward()

执行 loss 对参数 w 进行求导,会出现报错:RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

导致这个报错的主要是第 3 行代码 w += 1,如果把这句改成 w = w + 1,再执行就不会报错了。这种写法导致的 inplace operation 是比较好发现的,但是有的时候同样类似的报错,会比较不好发现。例如下面的代码:

import torch
x = torch.zeros(4)
w = torch.rand(4, requires_grad=True)
x[0] = torch.rand(1) * w[0]
for i in range(3):
    x[i+1] = torch.sin(x[i]) * w[i]
loss = x.sum()
loss.backward()

执行之后会出现报错:

>>> RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: 
[torch.FloatTensor []], which is output 0 of SelectBackward, is at version 4; expected version 3 instead. 
Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

根据提示我们可以使用 with torch.autograd.set_detect_anomaly(True) 来帮助我们定位具体的出错位置(这个方法会花费比较长的时间)。

with torch.autograd.set_detect_anomaly(True):
    x = torch.zeros(4)
    w = torch.rand(4, requires_grad=True)
    x[0] = torch.rand(1) * w[0]
    for i in range(3):
        x[i+1] = torch.sin(x[i]) * w[i]
    loss = x.sum()
    loss.backward()

运行会增加这些报错:

>>> /Users/strongnine/anaconda3/lib/python3.8/site-packages/torch/autograd/__init__.py:130: 
UserWarning: Error detected in SinBackward. Traceback of forward call that caused the error:

可以看到出现了 Error detected in SinBackward.,这句描述,我们可以猜测大概是 torch.sin() 这个函数出现了问题。实际上,这个报错的解决办法,就是将第 6 行代码 x[i+1] = torch.sin(x[i]) * w[i] 改成 x[i+1] = torch.sin(x[i].clone()) * w[i],就行了。

import torch
x = torch.zeros(4)
w = torch.rand(4, requires_grad=True)
x[0] = torch.rand(1) * w[0]
for i in range(3):
    x[i+1] = torch.sin(x[i].clone()) * w[i]
loss = x.sum()
loss.backward()

总结一下,遇到 inplace operation 的报错,一般可以通过:

  • x += 1 改成 x = x + 1
  • x[:, :, 0:3] = x[:, :, 0:3] + 1 改成 x[:, :, 0:3] = x[:, :, 0:3].clone() + 11
  • x[i+1] = torch.sin(x[i]) * w[i] 改成 x[i+1] = torch.sin(x[i].clone()) * w[i]

如果自己检查不出是哪里出现了问题,可以使用 with torch.autograd.set_detect_anomaly(True) 来帮助我们定位具体的出错位置,但是要注意的是这个方法一般会运行比较长的时间。

目录
相关文章
|
存储 机器学习/深度学习 PyTorch
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
186 1
|
6月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
991 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
1月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
152 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
8月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
685 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
3月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
250 9
|
5月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
256 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
4月前
|
机器学习/深度学习 数据可视化 PyTorch
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
1883 0
Flow Matching生成模型:从理论基础到Pytorch代码实现

热门文章

最新文章

推荐镜像

更多
下一篇
oss云网关配置