Go语言切片详解

简介: Go语言切片详解

1 前言


去年校招入职字节跳动从Java转Go已经有大半年了,说实话Go上手还是很容易的,而我期间一直在写业务相关的需求,对Go的一些底层数据结构的了解还是不够深入的,难得春节假期放长假,那么就以博客的形式来记录下Go数据结构的学习吧


2 切片简介


切片是一种数据结构,这种数据结构便于使用和管理数据集合。切片是围绕动态数组的概念构建的,可以按需自动增长和缩小。切片的动态增长是通过内置函数 append 来实现的。这个函数可以快速且高效地增长切片。还可以通过对切片再次切片来缩小一个切片的大小。因为切片的底层内存也是在连续块中分配的,所以切片还能获得索引、迭代以及为垃圾回收优化的好处。


3 切片的数据结构


切片本身并不是动态数组或者数组指针。它内部实现的数据结构通过指针引用底层数组,设定相关属性将数据读写操作限定在指定的区域内。切片本身是一个只读对象,其工作机制类似数组指针的一种封装。


切片(slice)是对数组一个连续片段的引用,所以切片是一个引用类型。这个片段可以是整个数组,或者是由起始和终止索引标识的一些项的子集。需要注意的是,终止索引标识的项不包括在切片内。切片提供了一个与指向数组的动态窗口。


给定项的切片索引可能比相关数组的相同元素的索引小。和数组不同的是,切片的长度可以在运行时修改,最小为 0 最大为相关数组的长度:切片是一个长度可变的数组。


Slice 的数据结构定义如下:

type slice struct {
    array unsafe.Pointer
    len   int
    cap   int
}

可见slice结构体由三部分组成:


  • array 表示一个指向数组的指针
  • len 表示切片的长度
  • cap 表示切片的最大容量


简单了解了切片的数据结构后,我们来看看切片初始化的几种方式,后续还会对切片的内部实现做更近深入的介绍。


4 切片初始化的几种方式


Go中有几种方法可以创建和初始化切片。是否能提前知道切片需要的容量通常会决定要如何创建切片。


3.1 nil 切片


var slice []int64


在Go里,nil 切片是很常见的创建切片的方法,Go不会为nil切片分配任何空间。


284a4ad94bf74f768e7e0136acb608db.png


3.2 空切片


// 使用 make 创建空的整型切片
slice := make([]int, 0)
// 使用切片字面量创建空的整型切片
slice := []int{}


在Go里,空切片在底层数组包含 0个元素,也没有分配任何存储空间。

6dcb04af00fe4a13abaa6ee8b468b39c.png


不管是使用 nil 切片还是空切片,对其调用内置函数 append、len 和 cap 的返回结果都是一样的。


3.3 nil 切片与空切片的区别


由上面两个示意图可以知道,空切片和 nil 切片的区别在于,空切片指向的地址不是nil,指向的是一个内存地址,但是它也没有分配任何内存空间,即底层数组中包含0个元素。


3.4 make和切片字面量


一种创建切片的方法是使用内置的 make 函数。当使用 make 时,需要传入一个参数,指定切片的长度:

// 创建一个字符串切片
// 其长度和容量都是5个元素
slice := make([]string, 5)

如果只指定长度,那么切片的容量和长度相等。也可以分别指定长度和容量:

// 创建一个整型切片
// 其长度为 3 个元素,容量为 5 个元素 
slice := make([]int, 3, 5)


分别指定长度和容量时,创建的切片,底层数组的长度是指定的容量,但是初始化后并不能访问所有的数组元素。切片可以访问 3 个元素,而底层数组拥有 5 个元素。剩余的 2 个元素可以在后期操作中合并到切片,可以通过切片访问这些元素。如果基于这个切片创建新的切片,新切片会和原有切片共享底层数组,也能通过后期操作来访问多余容量的元素。


不允许创建容量小于长度的切片:

// 创建一个整型切片
// 使其长度大于容量
slice := make([]int, 5, 3)
// Compiler Error:
// len larger than cap in make([]int)

另一种常用的创建切片的方法是使用切片字面量,这种方法和创建数组类似,只是不需要指定[]运算符里的值。初始的长度和容量会基于初始化时提供的元素的个数确定。


// 创建一个整型切片
// 其长度和容量都是 3 个元素 
slice := []int{10, 20, 30}


相关文章
|
1天前
|
存储 安全 编译器
go语言中进行不安全的类型操作
【5月更文挑战第10天】Go语言中的`unsafe`包提供了一种不安全但强大的方式来处理类型转换和底层内存操作。包含两个文档用途的类型和八个函数,本文也比较了不同变量和结构体的大小与对齐系数,强调了字段顺序对内存分配的影响。
32 8
go语言中进行不安全的类型操作
|
1天前
|
Go
配置go语言下载包 - 蓝易云
这个命令会将包下载到你的GOPATH目录下,并自动安装它。
20 1
|
2天前
|
安全 Go 调度
Go语言中的并发编程
Go语言自带了强大的并发编程能力,它的协程机制可以让程序轻松地实现高并发。本文将从并发编程的基础概念出发,介绍Go语言中的协程机制、通道和锁等相关知识点,帮助读者更好地理解并发编程在Go语言中的实践应用。
|
3天前
|
Ubuntu Unix Linux
【GO基础】1. Go语言环境搭建
【GO基础】1. Go语言环境搭建
|
4天前
|
JSON 前端开发 Go
lucky - go 语言实现的快速开发平台
go 语言实现的快速开发平台,自动生成crud代码,前端页面通过json配置,无需编写前端代码。
11 0
|
5天前
|
存储 Java Go
Go 语言切片如何扩容?(全面解析原理和过程)
Go 语言切片如何扩容?(全面解析原理和过程)
16 2
|
6天前
|
负载均衡 Go 调度
使用Go语言构建高性能的Web服务器:协程与Channel的深度解析
在追求高性能Web服务的今天,Go语言以其强大的并发性能和简洁的语法赢得了开发者的青睐。本文将深入探讨Go语言在构建高性能Web服务器方面的应用,特别是协程(goroutine)和通道(channel)这两个核心概念。我们将通过示例代码,展示如何利用协程处理并发请求,并通过通道实现协程间的通信和同步,从而构建出高效、稳定的Web服务器。
|
6天前
|
算法 Go 分布式数据库
构建高可用的分布式数据库集群:使用Go语言与Raft共识算法
随着数据量的爆炸式增长,单一数据库服务器已难以满足高可用性和可扩展性的需求。在本文中,我们将探讨如何使用Go语言结合Raft共识算法来构建一个高可用的分布式数据库集群。我们不仅会介绍Raft算法的基本原理,还会详细阐述如何利用Go语言的并发特性和网络编程能力来实现这一目标。此外,我们还将分析构建过程中可能遇到的挑战和解决方案,为读者提供一个完整的实践指南。
|
6天前
|
消息中间件 Go API
基于Go语言的微服务架构实践
随着云计算和容器化技术的兴起,微服务架构成为了现代软件开发的主流趋势。Go语言,以其高效的性能、简洁的语法和强大的并发处理能力,成为了构建微服务应用的理想选择。本文将探讨基于Go语言的微服务架构实践,包括微服务的设计原则、服务间的通信机制、以及Go语言在微服务架构中的优势和应用案例。
|
6天前
|
安全 测试技术 数据库连接
使用Go语言进行并发编程
【5月更文挑战第15天】Go语言以其简洁语法和强大的并发原语(goroutines、channels)成为并发编程的理想选择。Goroutines是轻量级线程,由Go运行时管理。Channels作为goroutine间的通信机制,确保安全的数据交换。在编写并发程序时,应遵循如通过通信共享内存、使用`sync`包同步、避免全局变量等最佳实践。理解并发与并行的区别,有效管理goroutine生命周期,并编写测试用例以确保代码的正确性,都是成功进行Go语言并发编程的关键。