推荐系统为什么使用稀疏矩阵?如何使用python的SciPy包处理稀疏矩阵(二)

简介: 推荐系统为什么使用稀疏矩阵?如何使用python的SciPy包处理稀疏矩阵(二)

SciPy的稀疏模块介绍

在Python中,稀疏数据结构在scipy中得到了有效的实现。稀疏模块,其中大部分是基于Numpy数组。实现背后的思想很简单:我们不将所有值存储在密集的矩阵中,而是以某种格式存储非零值(例如,使用它们的行和列索引)。

在我们深入研究CSR之前,让我们比较一下在使用DataFrames和使用稀疏矩阵时在时间和空间复杂度上的效率差异。

import numpy as np
from scipy import sparse
from sys import getsizeof# Matrix 1: Create a dense matrix (stored as a full matrix).
A_full = np.random.rand(600, 600)# Matrix 2: Store A_full as a sparse matrix (though it is dense).
A_sparse = sparse.csc_matrix(A_full)# Matrix 3: Create a sparse matrix (stored as a full matrix).
B_full = np.diag(np.random.rand(600))# Matrix 4: Store B_full as a sparse matrix.
B_sparse = sparse.csc_matrix(B_full)# Create a square function to return the square of the matrix
def square(A):
    return np.power(A, 2)

然后我们统计这些不同的矩阵以不同的形式存储以及它们使用了多少内存。

%timeit square(A_full)
print(getsizeof(A_full))>>> 6.91 ms ± 84.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> 2880112%timeit square(A_sparse)
print(getsizeof(A_sparse))>>> 409 ms ± 11.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
>>> 56%timeit square(B_full)
print(getsizeof(B_full))>>> 2.18 ms ± 56.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> 2880112%timeit square(B_sparse)
print(getsizeof(B_sparse))>>> 187 µs ± 5.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> 56

显然,当我们用稀疏模块存储一个稀疏矩阵时,可以获得时间和空间的最佳性能。

压缩稀疏行(CSR)

尽管在SciPy中有很多类型的稀疏矩阵,比如键的字典(DOK)和列表的列表(LIL),但我只讨论压缩稀疏行(CSR),因为它是最常用和最广为人知的格式。

CSR(以及CSC,又名压缩稀疏列)用于写一次读多任务。为了有效地表示稀疏矩阵,CSR使用三个numpy数组来存储一些相关信息,包括:

data(数据):非零值的值,这些是存储在稀疏矩阵中的非零值

indices(索引):列索引的数组,从第一行(从左到右)开始,我们标识非零位置并在该行中返回它们的索引。在下面的图中,第一个非零值出现在第0行第5列,因此5作为索引数组中的第一个值出现,然后是1(第1行,第1列)。

indptr(指针):表示索引指针,返回一个行开始的数组。这个定义容易把人搞糊涂,我选择这样解释:它告诉我们每行包含多少个值。在下面的例子中,我们看到第一行包含一个值a,因此我们用0:1对它进行索引。第二行包含两个值b, c,然后我们从1:3开始索引,以此类推。len(indptr) = len(data) + 1 = len(indexes) + 1,因为对于每一行,我们用开始和结束索引表示它(类似于索引列表)。

image.png

有哪些方法可以构造csr_matrix?

创建一个完整的矩阵并将其转换为一个稀疏矩阵

some_dense_matrix = np.random.random(600, 600)
some_sparse_matrix = sparse.csr_matrix(some_dense_matrix)

正如前面所看到的,这种方法是有很大问题的,因为我们必须首先获得这个非常消耗内存的密集矩阵,然后才能将它转换成一个稀疏矩阵。

创建一个空的稀疏矩阵

# format: csr_matrix((row_len, col_len))
empty_sparse_matrix = sparse.csr_matrix((600, 600))

注意,我们不应该创建一个空的稀疏矩阵,然后填充它们,因为csr_matrix被设计为一次写、一次读多。向csr_matrix写入将是低效的,并且应该考虑其他类型的稀疏矩阵,比如在操作稀疏结构方面更有效的List of lists。

用数据创建一个稀疏矩阵

# method 1
# format: csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
# where a[row_ind[k], col_ind[k]] = data[k]data = [3, 9, 5]
rows = [0, 1, 1]
cols = [2, 1, 2]sparse_matrix = sparse.csr_matrix((data, (rows, cols)),
                                  shape=(len(rows), len(cols))
sparse_matrix.toarray()>>> array([[0, 0, 3],
            [0, 9, 5],
            [0, 0, 0]], dtype=int64)# method 2
# format: csr_matrix((data, indices, indptr), [shape=(M, N)])
# column indices for row i: indices[indptr[i]:indptr[i+1]]
# data values: data[indptr[i]:indptr[i+1]]data = [3, 9, 5]
indices = [2, 1, 2]
indptr = [0, 1, 3, 3]sparse_matrix = sparse.csr_matrix((data, indices, indptr))
sparse_matrix.toarray()>>> array([[0, 0, 3],
            [0, 9, 5],
            [0, 0, 0]], dtype=int64)

推荐使用这种方法


最后推荐两篇文章,有兴趣的可以深入阅读

Sparse data structures in Python

https://rushter.com/blog/scipy-sparse-matrices/

Complexity and Sparse Matrices

http://www.acme.byu.edu/wp-content/uploads/2015/11/Vol1Lab4Complexity.pdf

目录
相关文章
|
1月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
47 4
|
1月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
1月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
22天前
|
Python 容器
[oeasy]python048_用变量赋值_连等赋值_解包赋值_unpack_assignment _
本文介绍了Python中变量赋值的不同方式,包括使用字面量和另一个变量进行赋值。通过`id()`函数展示了变量在内存中的唯一地址,并探讨了变量、模块、函数及类类型的地址特性。文章还讲解了连等赋值和解包赋值的概念,以及如何查看已声明的变量。最后总结了所有对象(如变量、模块、函数、类)都有其类型且在内存中有唯一的引用地址,构成了Python系统的基石。
28 5
|
1月前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
40 5
|
1月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
1月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之显著性检验:介绍显著性检验的基本概念、目的及在SciPy中的实现方法。通过scipy.stats模块进行显著性检验,包括正态性检验(使用偏度和峰度),并提供代码示例展示如何计算数据集的偏度和峰度。
36 2
|
1月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
29 1
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品推荐系统的深度学习模型
使用Python实现智能食品推荐系统的深度学习模型
102 2
|
1月前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
37 1