Linux——进程的概念(万字总结)(4)

简介: Linux——进程的概念(万字总结)(4)

十一、地址空间的阐述

1.程序地址空间

对于下面的图大家一定不陌生,接下来通过以下的代码,来正确认识这张图

1ecd1b2606ed46e9956a89f231c9802c.png

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h> 
int g_unval;
int g_val = 100;
int main()
{                    
    int a = 10;                                        
    int b = 20;                        
    const char *s = "hello world";       
    printf("code addr:%p\n", main);       //代码区            
    printf("string rdonly addr:%p\n", s); //字符常量区
    printf("uninit addr:%p\n", &g_unval); //未初始化
    printf("init addr:%p\n", &g_val);     //已初始化
    char *heap = (char*)malloc(10);
    printf("heap addr:%p\n", heap);       //堆区
    printf("stack addr:%p\n", &s);        //栈区                         
    printf("stack addr:%p\n", &heap);
    printf("stack addr:%p\n", &a);
    printf("stack addr:%p\n", &b);
    return 0;                           
} 

1ecd1b2606ed46e9956a89f231c9802c.png

       通过运行后的结果可以看出,空间所谓的分步情况确实如此,但是接下来这段代码运行后的结果,会让让你很诧异。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
int g_val = 100;
int main()
{
    if(fork() == 0){
        int ret = 5;
        while(ret){                                                                     
            printf("hello--- %d g_val = %d &g_val = %p\n", ret, g_val, &g_val);
            ret--;                         
            sleep(1);
            if(ret == 3){
                printf("################child更改数据###############\n");                              
                g_val = 200;
                printf("#############child更改数据完成##############\n");
            }   
        }                                          
    }                                  
    else{                  
        while(1){                                              
            printf("I am father:g_val = %d &g_val = %p\n", g_val, &g_val);                                                     
        }                                                              
    }                                                              
    return 0;                                               
}

1ecd1b2606ed46e9956a89f231c9802c.png

       通过上面的运行结果我们可以总结出:如果C/C++打印出来的地址是物理地址,那么上面的情况绝对不可能出现,所有这里的地址并不是物理地址,而是虚拟地址。

2.进程地址空间

之前说‘程序的地址空间’是不准确的,准确的应该说成进程虚拟地址空间 ,每个进程都会有自己的地址空间,认为自己独占物理内存。操作系统在描述进程地址空间时,是以结构体的形式描述的,在linux中这种结构体是 struct mm_struct 。它在内核中是一个数据结构类型,具体进程的地址空间变量。


       这些变量就是每个空间的起始位置与结束位置。如下图所示

1ecd1b2606ed46e9956a89f231c9802c.png

       进程地址空间就类似于一把尺子,每个空间都有对应的起始位置和结束位置。通过这个虚拟地址去间接访问内存;

为什么不能直接去访问物理内存?

    如果没有进程地址空间的加持,那么程序就会直接访问物理内存,没有区间可言,会存在恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。

3.如何通过虚拟地址访问物理地址

  每个进程都是独立的虚拟地址空间,两个独立进程的相同地址互不干扰,但是在物理上对每个进程可能也就分了一部分空间给了某个进程。


       每个进程被创建时,其对应的进程控制块和进程虚拟地址空间也会随之被创建。而操作系统可以通过进程的控制块找到其进程地址空间,通过页表对将虚拟地址转换为物理地址,达到访问物理地址的目的。


       这种方式称之为映射,调度某个进程执行时,就要把它的地址空间映射到一个物理空间上。

1ecd1b2606ed46e9956a89f231c9802c.png

此时,我们来回答一下刚刚为什么g_val的值发生了变化,但是父进程与子进程的地址还是一样的。

1ecd1b2606ed46e9956a89f231c9802c.png

写时拷贝:就是等到修改数据时才真正分配内存空间,这是对程序性能的优化,可以延迟甚至是避免内存拷贝,当然目的就是避免不必要的内存拷贝

总结

     简而言之,首先,程序数据加载到内存后,由操作系统分配进程PCB(task_struct和mm_struct(进程虚拟地址空间))和页表。此时我们的进程就算是创建好了。


虚拟地址的设计有何好处:


       1.有了虚拟地址,每个进程都认为自己独占内存资源,这样对于操作系统来讲,也更加偏于管理进程。


       2.采用间接的地址访问方法访问物理内存。程序中访问的内存地址不再是实际的物理内存地址,而是一个虚拟地址,然后由操作系统将这个虚拟地址映射到适当的物理内存地址上。这样,只要操作系统处理好虚拟地址到物理内存地址的映射,就可以保证不同的程序最终访问的内存地址位于不同的区域,彼此没有重叠。


       3.如果没有进程地址空间的加持,那么程序就会直接访问物理内存,没有区间可言,会存在恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。反之有利于保护物理内存。



目录
相关文章
|
6天前
|
消息中间件 算法 Linux
【Linux】详解如何利用共享内存实现进程间通信
【Linux】详解如何利用共享内存实现进程间通信
|
6天前
|
Linux
【Linux】命名管道的创建方法&&基于命名管道的两个进程通信的实现
【Linux】命名管道的创建方法&&基于命名管道的两个进程通信的实现
|
6天前
|
Linux
【Linux】匿名管道实现简单进程池
【Linux】匿名管道实现简单进程池
|
6天前
|
Linux
【Linux】进程通信之匿名管道通信
【Linux】进程通信之匿名管道通信
|
6天前
|
存储 Linux Shell
Linux:进程等待 & 进程替换
Linux:进程等待 & 进程替换
30 9
|
6天前
|
存储 Linux C语言
Linux:进程创建 & 进程终止
Linux:进程创建 & 进程终止
29 6
|
6天前
|
Linux 数据库
linux守护进程介绍 | Linux的热拔插UDEV机制
linux守护进程介绍 | Linux的热拔插UDEV机制
linux守护进程介绍 | Linux的热拔插UDEV机制
|
6天前
|
Unix Linux 调度
linux线程与进程的区别及线程的优势
linux线程与进程的区别及线程的优势
|
6天前
|
Linux 调度 C语言