深度学习:维度灾难

简介: 深度学习:维度灾难

深度学习:维度灾难

维度灾难的几何意义

在这里插入图片描述
假设有一个正方形,边长为1,那么面积为1 * 1。
正方形的内接圆的边长为0.5,面积为: pai r r。
假设一个正方体,边长为1,那么它的体积为 1 1 1。
正方体的内接球的半径为 3/4 pai r r r
按照这个规律,我们把维度拓展的 正方形为2维,正方体为3维,按照这个规律,我们把维度拓展到 n维。
此时 n维度 几何体的体积 就是n个1相乘,结果还是1.
然后 n维度 几何球体的体积就截然不同,设常数为K,体积则是:
$$K*r^n$$
因为r是小1的,所以几何球体当维度拓展到n维后,它的体积会逐渐趋近于0.

在这里我们来讨论一下如何理解体积,假设我们一个球体的体积=5,它们的总质量m是不会随着维度的升高而变化的,我们就说这个球体每单位体积中有5个数据。

当维度升高时,r=0.5,所以当维度达到足够高时,内接球体的体积会接近于0,也就是说球体的没单位体积内机会就没有数据,然而外接正方体的体积始终=1,也就是球内的数据随着维度的增加没有消失,都聚集在正方体的表面。这个定理源于各点距单位球中心距离的中间值计算公式:
在这里插入图片描述
这种情况下,一些度量相异性的距离指标(如:欧式距离)效果会大大折扣,从而导致一些基于这些指标的分类器在高维度的时候表现不好。
在这里插入图片描述
在此时,我们计算每个点

补充说明 (r 如果大于1)

我们在很多文章中可能都会看到这个例子,但是你有没有思考过,如果r>1,那么无论他的体积增大多少维度,他也不会缩小了,上面的那个理论不久作废了吗?
这里我给出两个解释:

  1. 我们平时做machine learning 项目的时候,一般数据都是会做归一化的,所以会控制在1以内。
  2. 假设r=2,那么正方体边长就是4,我们把维度升高的10维,高纬正方体的体积就是10个4相乘=4194304,而内接球体则是一个常数K乘10个2相乘,也就是2048 * K,它们在3维的体积相差不大,随着维度的升高,它们差距在不断增大,也可近似相对认为几何球体内没有数据。

维度灾难于过拟合的关系

假设在地球上有无数只猫和狗,但由于种种原因,我们总共只有10张描述猫狗的图片。我们的最终目的是利用这10张图片训练出一个很牛的分类器,它能准确的识别我们没见过的各种无数的猫、狗。
我们首先用一维特征(比如体重):
在这里插入图片描述
从图中我们可以在坐标轴中找到一个点来作为分类的基准点,左边是狗,右边是猫。但是我们发现这样的分类效果并不好,于是我们在增加1个特征(身高):
在这里插入图片描述
在这里我们也并不能找到一个很好的分隔线把他们分开,于是把特征拓展到三维:
在这里插入图片描述
到了现在,就可以找到一个很好的平面把他们分开。
那么是不是我们就可以按照这个规律不断提升特征的维度呢,分类的效果就会越来越好呢?
结果显然是不可行的,在维度提升的同时,很容易就可以找到一个看似完美的超平面来分割数据:

在这里插入图片描述

但是数据量要随着维度的增加而增加,数据本身就是有噪声的,在数据不足的时候,结果就是分类器学习到了很多数据集中的特例,因此对于现实数据往往会效果较差,因为现实数据是没有这些噪声以及异常特性的。就像上图,把分类结果映射到底维,这种现象也就是我们熟知的过拟合

缓解方法

  1. 增加数据
  2. L1\L2正则
  3. DropOut
  4. 降维
目录
相关文章
|
机器学习/深度学习 数据采集 算法
基于Pytorch之深度学习模型数据类型和维度转换个人总结
基于Pytorch之深度学习模型数据类型和维度转换个人总结
268 0
基于Pytorch之深度学习模型数据类型和维度转换个人总结
|
2天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第13天】 随着计算机视觉和人工智能技术的飞速发展,深度学习已成为推动图像识别领域进步的核心动力。本文将探讨深度学习技术在图像识别中的应用,并分析其面临的主要挑战。我们将从卷积神经网络(CNN)的基础出发,探索其在图像分类、目标检测和语义分割等方面的应用实例,并针对数据偏差、模型泛化能力、计算资源需求等关键问题展开讨论。通过案例分析和性能比较,我们旨在为读者提供一个关于深度学习在图像识别中应用的全面视角,同时指出未来的研究方向和技术趋势。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第16天】 随着科技的不断发展,深度学习技术在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,以及在实际应用中所面临的挑战。我们将介绍卷积神经网络(CNN)在图像识别中的关键作用,以及如何通过优化网络结构和训练策略来提高识别准确率。此外,我们还将讨论在大规模数据集上进行训练时可能遇到的问题,以及如何利用迁移学习和数据增强等技术来解决这些问题。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第16天】 随着人工智能技术的飞速发展,深度学习在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战。我们将重点关注卷积神经网络(CNN)在图像分类、目标检测和语义分割等方面的应用,并讨论数据不平衡、过拟合和计算资源等挑战。最后,我们将展望深度学习在图像识别领域的未来发展趋势。
|
1天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第16天】 随着人工智能技术的突飞猛进,特别是深度学习在图像识别领域的应用,已成为推动自动驾驶技术发展的关键因素。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,提高车辆的环境感知能力,确保行车安全。我们将分析卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在处理实时交通数据中的优势,同时探讨这些技术面临的挑战和潜在的改进方向。通过实验结果验证,基于深度学习的图像识别系统能够有效提升自动驾驶汽车的导航精度与决策效率,为未来智能交通系统的实现奠定基础。
14 4
|
1天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用及挑战
【5月更文挑战第16天】 随着计算机视觉技术的飞速发展,深度学习已经成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战。首先,我们将介绍深度学习的基本原理和关键技术,然后通过实例分析其在图像识别领域的应用,最后探讨当前面临的主要挑战和未来发展趋势。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
探索深度学习在图像识别中的创新应用
【5月更文挑战第16天】 随着人工智能技术的飞速发展,深度学习已成为推进图像识别领域前沿的核心技术。本文旨在深入剖析深度学习模型如何革新传统的图像处理流程,并探讨其在各个应用场景中展现出的独特优势与潜在挑战。我们将重点讨论卷积神经网络(CNN)的架构优化、数据增强技术、迁移学习策略以及对抗性网络的兴起等方面,以期为未来图像识别技术的发展提供参考和启示。
|
1天前
|
机器学习/深度学习 边缘计算 算法
深度学习在图像识别中的应用与挑战
【5月更文挑战第15天】 随着人工智能技术的飞速发展,深度学习已经成为了计算机视觉领域的核心动力。本文将探讨深度学习在图像识别任务中的应用,分析其面临的主要挑战,并提出可能的解决方案。我们将回顾卷积神经网络(CNN)的基础结构,并讨论数据增强、迁移学习、模型压缩等先进技术如何提升图像识别系统的性能。此外,我们还将关注对抗性攻击、数据集偏差和计算资源限制等问题对深度学习模型的影响。
|
2天前
|
机器学习/深度学习 存储 人工智能
深度学习在图像识别中的应用与挑战
【5月更文挑战第15天】 随着人工智能技术的飞速发展,深度学习已成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,以及在实际应用中所面临的挑战。我们将介绍卷积神经网络(CNN)的基本原理,以及如何利用深度学习模型进行图像分类、目标检测和语义分割等任务。此外,我们还将讨论在训练和部署深度学习模型时可能遇到的一些问题,如过拟合、计算资源需求和数据隐私等。