[python] 深度学习基础------人工神经网络实现鸢尾花分类(一)

简介: [python] 深度学习基础------人工神经网络实现鸢尾花分类(一)

人工智能主流是连结主义



人工智能主要有三个学派


行为主义:

行为主义是基于控制论的,是在构建感知、动作的控制系统。


理解行为主义有个很好的例子:就是让机器人单脚站立,通过感知要摔倒的方向,控制两只手的动作,保持身体的平衡,这就构建了一个感知、动作的控制系统,是典型的行为主义。


符号主义

符号主义是基于算数逻辑的,是基于表达式的,求解问题时,先把问题描述为表达式,在求解表达式如果你在求解某个问题时,可以用条件语句和若干计算公式描述出来,这就使用了符号主义的方法。


符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维,但是我们人类,不仅具备理性思维,还具备感性思维(举例理解:你看过的B站视频,下次再看就会感觉熟悉)


连结主义

连结主义就是在模拟人的这种感性思维,仿造我们人脑内的神经元连接关系。

image.png


单个神经元张图给出了人脑中的一根神经元,左侧这些是神经元的输入,右边是神经元的输出,人脑就是由很多这样的神经元首尾相接组成的网络。搭建人工神经网络可以让计算机具备感性思维。


理解:基于连结主义的神经网的设计过程



image.png


这张图给出了人类从出生到成年神经网络的变化,随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连接线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。


那我们人工神经网络图就可以这样表示:

image.png


人工神经网络的形成过程:



image.png


步骤:


准备数据:采集大量“特征/标签”数据

搭建网络:搭建神经网络结构

优化参数:训练网络获取最佳参数(反传)

应用网络:将网络保存为模型,输入新数据,  输出分类或预测结果(前传)


我们要用计算机仿出刚刚说的神经网络连接关系,让计算机具备感性思维。


首先需要准备数据,数据量越大越好,要构成特征和标签对(如果想识别猫,就要有大量猫的图片和这张图片是猫的标签,构成特征标签对)然后搭建神经网络的网络结构,再后通过反向传播,优化连接权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个权重模型保存起来,最后,用保存的模型输入从未见过的新数据,它会通过前向传播,输出概率值,概率值最大的一个就是分类和预测的结果了。


举例理解:


我们举个例子,来感受一下神经网络的设计过程,鸢尾花可以分为三类,狗尾草鸢尾,杂色鸢尾,弗吉尼亚鸢尾。我们为别对应标签0  1  2


人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽,可以得出鸢尾花的类别。比如:花萼长>花萼宽 且花瓣长/花瓣宽>2 , 则为1   可以判为杂色鸢尾


看到这里,大家应该已经想到通过if case这样的条件语句来实现分类,没错,条件语句是可以通过这些信息判断出鸢尾花的分类,这就是一个典型的专家系统。这个过程是理性的计算,只要有了这些数据,是一定可以通过条件判断公式计算出是哪类鸢尾花的。这是属于符号主义学派的。


但是我们发现鸢尾花的种植者,在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高,这就是直觉,是感性思维,这就是这次要分享的------神经网络方法。

刚刚提到的神经网络设计过程,首先需要采集大量的信息(输入特征),和他们所对应的是哪种鸢尾花(标签),大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数得到模型,当有新的从未见过的输入特征送入神经网络时,神经网络会输出识别的结果。

相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
364 15
|
3月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
150 0
|
3月前
|
机器学习/深度学习 数据采集 传感器
具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
283 0
|
1月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
3月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
3月前
|
机器学习/深度学习 传感器 人工智能
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
3月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
3月前
|
机器学习/深度学习 编解码 人工智能
102类农业害虫数据集(20000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在现代农业发展中,病虫害监测与防治 始终是保障粮食安全和提高农作物产量的关键环节。传统的害虫识别主要依赖人工观察与统计,不仅效率低下,而且容易受到主观经验、环境条件等因素的影响,导致识别准确率不足。

热门文章

最新文章

推荐镜像

更多