暂无个人介绍
本文介绍了基于MindIE服务和lighteval工具对DeepSeek-R1类模型进行能力测评的方法。针对AIME 2024、AIME 2025、MATH-500和GPQA等数据集,通过在Atlas 800I A2硬件上部署MindIE服务,结合开源项目Open R1的评测方法完成测评。主要内容包括模型权重下载、MindIE服务化部署、lighteval安装与配置,以及使用openai模式进行测评的具体步骤。最终展示了AIME 2024和MATH-500的测评结果,并对比了DeepSeek官方数据。该方案适合需要准确评估带推理思维链模型性能的场景。
本文针对NPU不支持LOOP算子的问题,提出一种解决方案:将ONNX模型拆分为含LOOP算子和不含LOOP算子的子图,单独推理LOOP部分。通过构造包含LOOP算子的ONNX模型,将其转换为JSON格式提取子图,并对子图进行修改(如添加输入节点、删除无关节点)。最后,将JSON转回ONNX格式,完成模型切分与优化。此方法适用于关键路径上的LOOP算子,可有效解决离线推理中的兼容性问题。
ais_bench 提供了基于昇腾硬件的 Python API,用于离线模型(.om模型)推理。支持静态与动态API场景,如单个或多个OM模型推理。通过 `InferSession` 类加载模型并执行推理,可灵活处理输入输出形状转换。示例代码涵盖图片读取、形状调整、多模型串联推理及资源释放等操作,满足多样化推理需求。
本章节基于上一内容,将ONNX模型拆分为loop算子部分与非loop算子部分,分别转换为OM模型。通过使用for循环替换loop算子的计算逻辑,构造子图执行流程,并编写OM模型推理脚本进行验证。同时,编写ONNX模型推理脚本对比两者推理结果,确保一致性。实验结果表明,拆分后的OM模型与原始ONNX模型推理结果一致,证明方案可行。
本文介绍了基于Ascend AI平台的OM模型动态推理方法,包括动态BatchSize、动态分辨率、动态维度及动态Shape四种场景,支持固定模式与自动设置模式。通过`ais_bench`工具实现推理,提供示例命令及输出结果说明,并解决常见问题(如环境变量未设置、输入与模型不匹配等)。此外,还提供了API推理指南及参考链接,帮助用户深入了解ONNX离线推理流程、性能优化案例及工具使用方法。
昇腾AI推理工具`ais_bench`基于ACL开发,支持命令行快速推理与性能测试(吞吐率、时延等),并提供相关API。用户需下载适配环境的`aclruntime`和`ais_bench`的whl包后通过pip安装。设置环境变量后,可通过多种场景使用工具:纯推理(默认输入全0数据)、调试模式(获取详细参数与耗时信息)、文件/文件夹输入(指定Numpy文件或目录)、以及多Device并行推理。例如,BERT模型需按顺序传入三个文件夹对应其输入参数。工具输出包括吞吐率、耗时等关键指标,助力高效模型性能评估。
本章节主要介绍如何将ONNX模型转化为昇腾AI处理器支持的OM模型,并进行离线推理。通过昇腾张量编译器(ATC),可实现静态OM、动态BatchSize、动态分辨率、动态维度及动态shape等多种模型转换。文中详细说明了ATC工具的使用方法、参数配置、命令格式以及常见问题解决方法,同时提供了具体示例和可视化工具辅助输入参数确认,帮助用户高效完成模型转换与部署。
本文介绍了性能调优的全流程,包括分析、定位与优化。通过 profiling 工具采集算子级性能数据,定位计算与调度通信瓶颈。针对计算时间过长问题,可通过升级算子或提交工单解决;调度优化则关注重复编译,关闭在线编译或使用 aclnn 算子可提升效率。数据采集使用 paddlepaddle 的 profiler 工具,结合 msprof 解析生成的性能数据,重点分析 op_statistic_*.csv 和 op_summary_*.csv 文件,通过关键字段(如 Ratio、Total Time、Task Duration 和 Task Wait Time)量化性能瓶颈并实施优化策略。
本节主要介绍如何将 PP-OCRv4 模型转化为 ONNX 模型,包括环境准备、模型下载、训练模型转 inference 模型及最终转为 ONNX 格式的过程。首先需安装 Paddle2ONNX 和 ONNXRuntime,接着下载并解压训练模型。通过 `export_model.py` 脚本将训练模型转化为 inference 模型,生成包含结构和参数的文件。最后使用 Paddle2ONNX 工具完成到 ONNX 格式的转换,并可选地使用 onnxslim 进行模型优化。各步骤均提供详细命令与参数说明,便于实际操作与部署。
本案例以PaddleOCRv4模型为例,详细介绍了将模型迁移到NPU的完整流程。迁移过程中需确保模型功能在新硬件上无误,重点关注偶发性错误及长时间运行时可能出现的问题,并通过日志辅助定位问题。文档涵盖环境搭建、数据集准备、模型配置、训练启动及常见问题排查等内容。例如,通过设置环境变量排查缺失算子,处理Paddle版本兼容性问题,以及解决进程残留等。适合希望将OCR模型部署到NPU的开发者参考。
本内容主要介绍Paddle针对非CPU和Nvidia GPU硬件(如NPU)的适配流程与方法。适配代码存于PaddleCustomDevice仓库,路径为`PaddleCustomDevice/backends/npu`,包含kernels(算子适配)和tests(单元测试)两个核心目录。适配流程分为算子注册、适配函数入参与主体实现三步,重点对齐Paddle与CANN算子参数。
本文详细介绍了模型在不同硬件(如GPU与NPU)间迁移时的精度对齐方法,包括前向和反向对齐的具体步骤。前向对齐通过模块化对比计算结果(如平均值、最大最小值等),确保误差在合理范围内;反向对齐则聚焦于梯度差异,利用二分法定位问题算子。同时,文章结合PPHGNet_small和MultiHead等具体模块代码,说明了如何打印输出并分析中间结果。此外,还探讨了私有格式、梯度异常及特殊shape等可能影响精度的因素,并提出相应解决策略。整体流程清晰,为跨硬件模型迁移提供了实用指导。
本指南详细介绍在ARM环境中准备CANN环境、安装Paddle深度学习框架及PaddleCustomDevice的过程。首先下载并加载CANN镜像,启动Docker容器;接着通过日构建包或源码编译安装PaddlePaddle和PaddleCustomDevice;可选更新CANN版本时需注意环境变量配置与路径设置。最后提供基础功能检查方法,包括硬件后端、版本验证及框架健康检查,确保环境搭建成功。
本文详细介绍PaddlePaddle与NPU的适配工作,涵盖训练与推理支持、性能优化及离线推理方案。PaddleCustomDevice作为适配层,支持主流模型(详见飞桨-昇腾模型列表),多数性能媲美V100,部分调优模型接近0.8*A800。硬件适配主要针对A2芯片,A1兼容但310系列建议离线推理。提供常用模型仓链接及整体方案导览,包括环境准备、算子适配、性能调优和Paddle转ONNX/OM等内容。