编程是为了更深刻的了解这个世界,或者作为自己的职业谋生存。 读书是为了让自己的灵魂得到升华,照亮自己的同时也指引他人。旅行见天地,读书明事理,工作合行知。
登录注册 热门图书 图书分类 图书推荐 借阅图书 购物图书 个人中心 可视化大屏 后台管理
这是一个基于Apriori算法的电影推荐系统概览。系统通过挖掘用户评分数据来发现关联规则,例如用户观看某部电影后可能感兴趣的其他电影。算法核心是逐层生成频繁项集并设定最小支持度阈值,之后计算规则的置信度。案例中展示了数据预处理、频繁项集生成以及规则提取的过程,具体包括用户评分电影的统计分析,如1-5部电影的评分组合。最后,通过Python代码展示了Apriori算法的实现,生成推荐规则,并给出了一个简单的推荐示例。整个过程旨在提高推荐的精准度,基于用户已评分的电影推测他们可能尚未评分但可能喜欢的电影。
基于Keras的图书推荐系统利用深度学习的Embedding技术,根据用户评分预测高评分书籍。模型包括用户和书籍的Embedding层,concatenation和全连接层。通过训练集与测试集划分,使用adam优化器和MSE损失函数进行训练。程序展示了模型预测的图书ID和评分概率,以及实际推荐的Top 10书单。代码中包含数据预处理、模型训练与预测功能。