开发者社区> CodeSample> 正文

Spark使用OSS Select加速数据查询

简介: 本文介绍如何配置 Spark 使用 OSS Select 加速数据查询。

背景信息

本文所有操作基于 Apache Impala(CDH6) 处理 OSS 数据搭建的 CDH6 集群及配置。
说明 文中所有 ${} 的内容为环境变量,请根据您实际的环境修改。

步骤一:配置 Spark 支持读写 OSS

由于默认 Spark 并没有将 OSS 的支持包放到它的 CLASSPATH 里面,所以我们需要配置 Spark 支持读写 OSS。您需要在所有的 CDH 节点执行以下操作:

  1. 进入到 ${CDH_HOME}/lib/spark 目录,执行如下命令:
    [root@cdh-master spark]# cd jars/
    [root@cdh-master jars]# ln -s ../../../jars/hadoop-aliyun-3.0.0-cdh6.0.1.jar hadoop-aliyun.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-2.8.3.jar aliyun-sdk-oss-2.8.3.jar
    [root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar
  2. 进入到 ${CDH_HOME}/lib/spark 目录,运行一个查询。
    [root@cdh-master spark]# ./bin/spark-shell
    WARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).
    WARNING: Running spark-class from user-defined location.
    Setting default log level to "WARN".
    To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
    Spark context Web UI available at http://x.x.x.x:4040
    Spark context available as 'sc' (master = yarn, app id = application_1540878848110_0004).
    Spark session available as'spark'.
    Welcome to
          ____              __
         / __/__  ___ _____/ /__
        _\ \/ _ \/ _ `/ __/  '_/
       /___/ .__/\_,_/_/ /_/\_\   version 2.2.0-cdh6.0.1
          /_/
    
    Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)
    Type in expressions to have them evaluated.
    Type :help for more information.
    
    scala> val myfile = sc.textFile("oss://{your-bucket-name}/50/store_sales")
    myfile: org.apache.spark.rdd.RDD[String] = oss://{your-bucket-name}/50/store_sales MapPartitionsRDD[1] at textFile at <console>:24
    
    scala> myfile.count()
    res0: Long = 144004764
    
    scala> myfile.map(line => line.split('|')).filter(_(0).toInt >= 2451262).take(3)
    res15: Array[Array[String]] = Array(Array(2451262, 71079, 20359, 154660, 284233, 6206, 150579, 46, 512, 2160001, 84, 6.94, 11.38, 9.33, 681.83, 783.72, 582.96, 955.92, 5.09, 681.83, 101.89, 106.98, -481.07), Array(2451262, 71079, 26863, 154660, 284233, 6206, 150579, 46, 345, 2160001, 12, 67.82, 115.29, 25.36, 0.00, 304.32, 813.84, 1383.48, 21.30, 0.00, 304.32, 325.62, -509.52), Array(2451262, 71079, 55852, 154660, 284233, 6206, 150579, 46, 243, 2160001, 74, 32.41, 34.67, 1.38, 0.00, 102.12, 2398.34, 2565.58, 4.08, 0.00, 102.12, 106.20, -2296.22))
    
    scala> myfile.map(line => line.split('|')).filter(_(0) >= "2451262").saveAsTextFile("oss://{your-bucket-name}/spark-oss-test.1")

    可正常执行查询,则部署生效。

步骤二:配置 Spark 支持 OSS Select

OSS Select 详情请参见OSS Select,以下内容基于 oss-cn-shenzhen.aliyuncs.com 这个 OSS EndPoint 来进行。您需要在所有的 CDH 节点执行以下操作:

  1. 下载 OSS Select 的 Spark 支持包${CDH_HOME}/jars 目录下(目前该支持包还在测试中)。
  2. 解压支持包。
    [root@cdh-master jars]# tar -tvf spark-2.2.0-oss-select-0.1.0-SNAPSHOT.tar.gz 
    drwxr-xr-x root/root 0 2018-10-30 17:59 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/
    -rw-r--r-- root/root 26514 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/stax-api-1.0.1.jar
    -rw-r--r-- root/root 547584 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-sdk-oss-3.3.0.jar
    -rw-r--r-- root/root 13277 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-sts-3.0.0.jar
    -rw-r--r-- root/root 116337 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-core-3.4.0.jar
    -rw-r--r-- root/root 215492 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-ram-3.0.0.jar
    -rw-r--r-- root/root 67758 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jettison-1.1.jar
    -rw-r--r-- root/root 57264 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/json-20170516.jar
    -rw-r--r-- root/root 890168 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jaxb-impl-2.2.3-1.jar
    -rw-r--r-- root/root 458739 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jersey-core-1.9.jar
    -rw-r--r-- root/root 147952 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jersey-json-1.9.jar
    -rw-r--r-- root/root 788137 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-java-sdk-ecs-4.2.0.jar
    -rw-r--r-- root/root 153115 2018-10-30 16:11 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/jdom-1.1.jar
    -rw-r--r-- root/root 65437 2018-10-31 14:41 spark-2.2.0-oss-select-0.1.0-SNAPSHOT/aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar
    						
  3. 进入 ${CDH_HOME}/lib/spark/jars 目录,执行如下命令:
    [root@cdh-master jars]# pwd
    /opt/cloudera/parcels/CDH/lib/spark/jars
    [root@cdh-master jars]# rm -f aliyun-sdk-oss-2.8.3.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar aliyun-oss-select-spark_2.11-0.1.0-SNAPSHOT.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-core-3.4.0.jar aliyun-java-sdk-core-3.4.0.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ecs-4.2.0.jar aliyun-java-sdk-ecs-4.2.0.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-ram-3.0.0.jar aliyun-java-sdk-ram-3.0.0.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-java-sdk-sts-3.0.0.jar aliyun-java-sdk-sts-3.0.0.jar
    [root@cdh-master jars]# ln -s ../../../jars/aliyun-sdk-oss-3.3.0.jar aliyun-sdk-oss-3.3.0.jar
    [root@cdh-master jars]# ln -s ../../../jars/jdom-1.1.jar jdom-1.1.jar

对比测试

测试环境:使用 spark on yarn 进行对比测试,其中 Node Manager 节点是4个,每个节点最多可以运行4个 container,每个 container 配备的资源是 1 核 2GB 内存。

测试数据:共 630MB,包含 3 列,分别是姓名、公司和年龄。

ot@cdh-master jars]# hadoop fs -ls oss://select-test-sz/people/
Found 10 items
-rw-rw-rw-   1   63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00000
-rw-rw-rw-   1   63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00001
-rw-rw-rw-   1   63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00002
-rw-rw-rw-   1   63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00003
-rw-rw-rw-   1   63079930 2018-10-30 17:06 oss://select-test-sz/people/part-00004
-rw-rw-rw-   1   63079930 2018-10-30 17:12 oss://select-test-sz/people/part-00005
-rw-rw-rw-   1   63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00006
-rw-rw-rw-   1   63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00007
-rw-rw-rw-   1   63079930 2018-10-30 17:15 oss://select-test-sz/people/part-00008
-rw-rw-rw-   1   63079930 2018-10-30 17:16 oss://select-test-sz/people/part-00009
进入到 ${CDH_HOME}/lib/spark/,启动 spark-shell ,分别测试使用 OSS Select 查询数据和不使用 OSS Select 查询数据:
[root@cdh-master spark]# ./bin/spark-shell
WARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).
WARNING: Running spark-class from user-defined location.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://x.x.x.x:4040
Spark context available as 'sc' (master = yarn, app id = application_1540887123331_0008).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.0-cdh6.0.1
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)
Type in expressions to have them evaluated.
Type :help for more information.

scala> val sqlContext = spark.sqlContext
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4bdef487

scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +
     |   "OPTIONS (" +
     |   "oss.bucket 'select-test-sz', " +
     |   "oss.prefix 'people', " + // objects with this prefix belong to this table
     |   "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'
     |   "oss.data.format 'csv'," + // we only support csv now
     |   "oss.input.csv.header 'None'," +
     |   "oss.input.csv.recordDelimiter '\r\n'," +
     |   "oss.input.csv.fieldDelimiter ','," +
     |   "oss.input.csv.commentChar '#'," +
     |   "oss.input.csv.quoteChar '\"'," +
     |   "oss.output.csv.recordDelimiter '\n'," +
     |   "oss.output.csv.fieldDelimiter ','," +
     |   "oss.output.csv.quoteChar '\"'," +
     |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
     |   "oss.accessKeyId 'Your Access Key Id', " +
     |   "oss.accessKeySecret 'Your Access Key Secret')")
res0: org.apache.spark.sql.DataFrame = []

scala>   val sql: String = "select count(*) from people where name like 'Lora%'"
sql: String = select count(*) from people where name like 'Lora%'

scala>   sqlContext.sql(sql).show()
+--------+
|count(1)|
+--------+
|   31770|
+--------+

scala> val textFile = sc.textFile("oss://select-test-sz/people/")
textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/people/ MapPartitionsRDD[8] at textFile at <console>:24

scala> textFile.map(line => line.split(',')).filter(_(0).startsWith("Lora")).count()
res3: Long = 31770
				

从下图可看到:使用 OSS Select 查询数据耗时为 15s,不使用 OSS Select 查询数据耗时为 54s,使用 OSS Select 能大幅度加快查询速度。

Spark 对接 OSS Select 支持包的实现(Preview)

通过扩展 Spark 的 DataSource API 可以实现 Spark 对接 OSS Select。通过实现 PrunedFilteredScan,可以把需要的列和过滤条件下推到 OSS Select 执行。目前这个支持包还在开发中。
  • 定义的规范:
    scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +
         |   "OPTIONS (" +
         |   "oss.bucket 'select-test-sz', " +
         |   "oss.prefix 'people', " + // objects with this prefix belong to this table
         |   "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'
         |   "oss.data.format 'csv'," + // we only support csv now
         |   "oss.input.csv.header 'None'," +
         |   "oss.input.csv.recordDelimiter '\r\n'," +
         |   "oss.input.csv.fieldDelimiter ','," +
         |   "oss.input.csv.commentChar '#'," +
         |   "oss.input.csv.quoteChar '\"'," +
         |   "oss.output.csv.recordDelimiter '\n'," +
         |   "oss.output.csv.fieldDelimiter ','," +
         |   "oss.output.csv.quoteChar '\"'," +
         |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
         |   "oss.accessKeyId 'Your Access Key Id', " +
         |   "oss.accessKeySecret 'Your Access Key Secret')")
    字段 说明
    oss.bucket 数据所在的 Bucket
    oss.prefix 拥有这个前缀的 Object 都属于定义的这个 TEMPORARY VIEW。
    oss.schema 这个 TEMPORARY VIEW 的 schema,目前通过字符串指定,后续会通过一个文件来指定 schema。
    oss.data.format 数据内容的格式,目前支持 CSV 格式,其他格式也会陆续支持。
    oss.input.csv.* 定义 CSV 输入格式参数。
    oss.output.csv.* 定义 CSV 输出格式参数。
    oss.endpoint bucket 所在的 Endpoint。
    oss.accessKeyId 填写 AccessKeyId。
    oss.accessKeySecret 填写 AccessKeySecret。
    说明 目前只定义了基本参数,详情请参见 OSS Select API 文档,其余参数将陆续支持。
  • 支持的过滤条件:=,<,>,<=, >=,||,or,not,and,in,like(StringStartsWith,StringEndsWith,StringContains)。对于不能下推的过滤条件,例如算术运算、字符串拼接等通过 PrunedFilteredScan 获取不到的条件,则只下推需要的列到 OSS Select。
    说明

    OSS Select 还支持其他过滤条件,详情请参见 OSS Select API 文档

对比TPC-H的查询

通过测试 TPC-H 中 query1.sql 对于 lineitem 这个 table 的查询性能,来检验配置效果。为了能使 OSS Select 过滤更多的数据,我们将 where 条件由 l_shipdate <= '1998-09-16' 改为 where l_shipdate > '1997-09-16',测试数据大小为 2.27GB。

  • 仅使用 Spark SQL 查询:
    [root@cdh-master ~]# hadoop fs -ls oss://select-test-sz/data/lineitem.csv
    -rw-rw-rw-   1 2441079322 2018-10-31 11:18 oss://select-test-sz/data/lineitem.csv
  • 在 Spark SQL 上使用 OSS Select 查询:
    scala> import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}
    import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}
    
    scala> import org.apache.spark.sql.{Row, SQLContext}
    import org.apache.spark.sql.{Row, SQLContext}
    
    scala> val sqlContext = spark.sqlContext
    sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@74e2cfc5
    
    scala> val textFile = sc.textFile("oss://select-test-sz/data/lineitem.csv")
    textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/data/lineitem.csv MapPartitionsRDD[1] at textFile at <console>:26
    
    scala> val dataRdd = textFile.map(_.split('|'))
    dataRdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:28
    
    scala> val schema = StructType(
         |     List(
         |         StructField("L_ORDERKEY",LongType,true),
         |         StructField("L_PARTKEY",LongType,true),
         |         StructField("L_SUPPKEY",LongType,true),
         |         StructField("L_LINENUMBER",IntegerType,true),
         |         StructField("L_QUANTITY",DoubleType,true),
         |         StructField("L_EXTENDEDPRICE",DoubleType,true),
         |         StructField("L_DISCOUNT",DoubleType,true),
         |         StructField("L_TAX",DoubleType,true),
         |         StructField("L_RETURNFLAG",StringType,true),
         |         StructField("L_LINESTATUS",StringType,true),
         |         StructField("L_SHIPDATE",StringType,true),
         |         StructField("L_COMMITDATE",StringType,true),
         |         StructField("L_RECEIPTDATE",StringType,true),
         |         StructField("L_SHIPINSTRUCT",StringType,true),
         |         StructField("L_SHIPMODE",StringType,true),
         |         StructField("L_COMMENT",StringType,true)
         |     )
         | )
    schema: org.apache.spark.sql.types.StructType = StructType(StructField(L_ORDERKEY,LongType,true), StructField(L_PARTKEY,LongType,true), StructField(L_SUPPKEY,LongType,true), StructField(L_LINENUMBER,IntegerType,true), StructField(L_QUANTITY,DoubleType,true), StructField(L_EXTENDEDPRICE,DoubleType,true), StructField(L_DISCOUNT,DoubleType,true), StructField(L_TAX,DoubleType,true), StructField(L_RETURNFLAG,StringType,true), StructField(L_LINESTATUS,StringType,true), StructField(L_SHIPDATE,StringType,true), StructField(L_COMMITDATE,StringType,true), StructField(L_RECEIPTDATE,StringType,true), StructField(L_SHIPINSTRUCT,StringType,true), StructField(L_SHIPMODE,StringType,true), StructField(L_COMMENT,StringType,true))
    
    scala> val dataRowRdd = dataRdd.map(p => Row(p(0).toLong, p(1).toLong, p(2).toLong, p(3).toInt, p(4).toDouble, p(5).toDouble, p(6).toDouble, p(7).toDouble, p(8), p(9), p(10), p(11), p(12), p(13), p(14), p(15)))
    dataRowRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at <console>:30
    
    scala> val dataFrame = sqlContext.createDataFrame(dataRowRdd, schema)
    dataFrame: org.apache.spark.sql.DataFrame = [L_ORDERKEY: bigint, L_PARTKEY: bigint ... 14 more fields]
    
    scala> dataFrame.createOrReplaceTempView("lineitem")
    
    scala> spark.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
    +------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
    |l_returnflag|l_linestatus|    sum_qty|      sum_base_price|      sum_disc_price|          sum_charge|           avg_qty|         avg_price|           avg_disc|count_order|
    +------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
    |           N|           O|7.5697385E7|1.135107538838699...|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.036487881756|0.04999335309103123|    2968297|
    +------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
    
    scala> sqlContext.sql("CREATE TEMPORARY VIEW item USING com.aliyun.oss " +
         |   "OPTIONS (" +
         |   "oss.bucket 'select-test-sz', " +
         |   "oss.prefix 'data', " +
         |   "oss.schema 'L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long, L_LINENUMBER int, L_QUANTITY double, L_EXTENDEDPRICE double, L_DISCOUNT double, L_TAX double, L_RETURNFLAG string, L_LINESTATUS string, L_SHIPDATE string, L_COMMITDATE string, L_RECEIPTDATE string, L_SHIPINSTRUCT string, L_SHIPMODE string, L_COMMENT string'," +
         |   "oss.data.format 'csv'," + // we only support csv now
         |   "oss.input.csv.header 'None'," +
         |   "oss.input.csv.recordDelimiter '\n'," +
         |   "oss.input.csv.fieldDelimiter '|'," +
         |   "oss.input.csv.commentChar '#'," +
         |   "oss.input.csv.quoteChar '\"'," +
         |   "oss.output.csv.recordDelimiter '\n'," +
         |   "oss.output.csv.fieldDelimiter ','," +
         |   "oss.output.csv.commentChar '#'," +
         |   "oss.output.csv.quoteChar '\"'," +
         |   "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
         |   "oss.accessKeyId 'Your Access Key Id', " +
         |   "oss.accessKeySecret 'Your Access Key Secret')")
    res2: org.apache.spark.sql.DataFrame = []
    
    scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
    
    scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
    +------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
    |l_returnflag|l_linestatus|    sum_qty|      sum_base_price|      sum_disc_price|          sum_charge|           avg_qty|        avg_price|           avg_disc|count_order|
    +------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
    |           N|           O|7.5697385E7|1.135107538838701E11|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.03648788181|0.04999335309103024|    2968297|
    +------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
从下图可以看出:在 Spark SQL 上使用 OSS Select 查询数据耗时为 38s,在 Spark SQL 上不使用 OSS Select 查询数据耗时为2.5min,使用 OSS Select 可大幅度加快查询速度。

参考文档

分享:
若有任何问题或疑惑,请反馈给我们 立即提问

阿里云存储基于飞天盘古2.0分布式存储系统,产品多种多样,充分满足用户数据存储和迁移上云需求。

官方博客
最新文章
存储产品
客户案例