CodeSample小助手 2019-12-30
由于默认 Spark 并没有将 OSS 的支持包放到它的 CLASSPATH 里面,所以我们需要配置 Spark 支持读写 OSS。您需要在所有的 CDH 节点执行以下操作:
OSS Select 详情请参见OSS Select,以下内容基于 oss-cn-shenzhen.aliyuncs.com 这个 OSS EndPoint 来进行。您需要在所有的 CDH 节点执行以下操作:
测试环境:使用 spark on yarn 进行对比测试,其中 Node Manager 节点是4个,每个节点最多可以运行4个 container,每个 container 配备的资源是 1 核 2GB 内存。
测试数据:共 630MB,包含 3 列,分别是姓名、公司和年龄。
ot@cdh-master jars]# hadoop fs -ls oss://select-test-sz/people/
Found 10 items
-rw-rw-rw- 1 63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00000
-rw-rw-rw- 1 63079930 2018-10-30 17:03 oss://select-test-sz/people/part-00001
-rw-rw-rw- 1 63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00002
-rw-rw-rw- 1 63079930 2018-10-30 17:05 oss://select-test-sz/people/part-00003
-rw-rw-rw- 1 63079930 2018-10-30 17:06 oss://select-test-sz/people/part-00004
-rw-rw-rw- 1 63079930 2018-10-30 17:12 oss://select-test-sz/people/part-00005
-rw-rw-rw- 1 63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00006
-rw-rw-rw- 1 63079930 2018-10-30 17:14 oss://select-test-sz/people/part-00007
-rw-rw-rw- 1 63079930 2018-10-30 17:15 oss://select-test-sz/people/part-00008
-rw-rw-rw- 1 63079930 2018-10-30 17:16 oss://select-test-sz/people/part-00009
[root@cdh-master spark]# ./bin/spark-shell
WARNING: User-defined SPARK_HOME (/opt/cloudera/parcels/CDH-6.0.1-1.cdh6.0.1.p0.590678/lib/spark) overrides detected (/opt/cloudera/parcels/CDH/lib/spark).
WARNING: Running spark-class from user-defined location.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://x.x.x.x:4040
Spark context available as 'sc' (master = yarn, app id = application_1540887123331_0008).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.2.0-cdh6.0.1
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)
Type in expressions to have them evaluated.
Type :help for more information.
scala> val sqlContext = spark.sqlContext
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@4bdef487
scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +
| "OPTIONS (" +
| "oss.bucket 'select-test-sz', " +
| "oss.prefix 'people', " + // objects with this prefix belong to this table
| "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'
| "oss.data.format 'csv'," + // we only support csv now
| "oss.input.csv.header 'None'," +
| "oss.input.csv.recordDelimiter '\r\n'," +
| "oss.input.csv.fieldDelimiter ','," +
| "oss.input.csv.commentChar '#'," +
| "oss.input.csv.quoteChar '\"'," +
| "oss.output.csv.recordDelimiter '\n'," +
| "oss.output.csv.fieldDelimiter ','," +
| "oss.output.csv.quoteChar '\"'," +
| "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
| "oss.accessKeyId 'Your Access Key Id', " +
| "oss.accessKeySecret 'Your Access Key Secret')")
res0: org.apache.spark.sql.DataFrame = []
scala> val sql: String = "select count(*) from people where name like 'Lora%'"
sql: String = select count(*) from people where name like 'Lora%'
scala> sqlContext.sql(sql).show()
+--------+
|count(1)|
+--------+
| 31770|
+--------+
scala> val textFile = sc.textFile("oss://select-test-sz/people/")
textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/people/ MapPartitionsRDD[8] at textFile at <console>:24
scala> textFile.map(line => line.split(',')).filter(_(0).startsWith("Lora")).count()
res3: Long = 31770
从下图可看到:使用 OSS Select 查询数据耗时为 15s,不使用 OSS Select 查询数据耗时为 54s,使用 OSS Select 能大幅度加快查询速度。
scala> sqlContext.sql("CREATE TEMPORARY VIEW people USING com.aliyun.oss " +
| "OPTIONS (" +
| "oss.bucket 'select-test-sz', " +
| "oss.prefix 'people', " + // objects with this prefix belong to this table
| "oss.schema 'name string, company string, age long'," + // like 'column_a long, column_b string'
| "oss.data.format 'csv'," + // we only support csv now
| "oss.input.csv.header 'None'," +
| "oss.input.csv.recordDelimiter '\r\n'," +
| "oss.input.csv.fieldDelimiter ','," +
| "oss.input.csv.commentChar '#'," +
| "oss.input.csv.quoteChar '\"'," +
| "oss.output.csv.recordDelimiter '\n'," +
| "oss.output.csv.fieldDelimiter ','," +
| "oss.output.csv.quoteChar '\"'," +
| "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
| "oss.accessKeyId 'Your Access Key Id', " +
| "oss.accessKeySecret 'Your Access Key Secret')")
字段 | 说明 |
---|---|
oss.bucket | 数据所在的 Bucket |
oss.prefix | 拥有这个前缀的 Object 都属于定义的这个 TEMPORARY VIEW。 |
oss.schema | 这个 TEMPORARY VIEW 的 schema,目前通过字符串指定,后续会通过一个文件来指定 schema。 |
oss.data.format | 数据内容的格式,目前支持 CSV 格式,其他格式也会陆续支持。 |
oss.input.csv.* | 定义 CSV 输入格式参数。 |
oss.output.csv.* | 定义 CSV 输出格式参数。 |
oss.endpoint | bucket 所在的 Endpoint。 |
oss.accessKeyId | 填写 AccessKeyId。 |
oss.accessKeySecret | 填写 AccessKeySecret。 |
=,<,>,<=, >=,||,or,not,and,in,like(StringStartsWith,StringEndsWith,StringContains)
。对于不能下推的过滤条件,例如算术运算、字符串拼接等通过 PrunedFilteredScan 获取不到的条件,则只下推需要的列到 OSS Select。
OSS Select 还支持其他过滤条件,详情请参见 OSS Select API 文档。
通过测试 TPC-H 中 query1.sql 对于 lineitem 这个 table 的查询性能,来检验配置效果。为了能使 OSS Select 过滤更多的数据,我们将 where 条件由 l_shipdate <= '1998-09-16' 改为 where l_shipdate > '1997-09-16',测试数据大小为 2.27GB。
[root@cdh-master ~]# hadoop fs -ls oss://select-test-sz/data/lineitem.csv
-rw-rw-rw- 1 2441079322 2018-10-31 11:18 oss://select-test-sz/data/lineitem.csv
scala> import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}
import org.apache.spark.sql.types.{IntegerType, LongType, StringType, StructField, StructType, DoubleType}
scala> import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.{Row, SQLContext}
scala> val sqlContext = spark.sqlContext
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@74e2cfc5
scala> val textFile = sc.textFile("oss://select-test-sz/data/lineitem.csv")
textFile: org.apache.spark.rdd.RDD[String] = oss://select-test-sz/data/lineitem.csv MapPartitionsRDD[1] at textFile at <console>:26
scala> val dataRdd = textFile.map(_.split('|'))
dataRdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:28
scala> val schema = StructType(
| List(
| StructField("L_ORDERKEY",LongType,true),
| StructField("L_PARTKEY",LongType,true),
| StructField("L_SUPPKEY",LongType,true),
| StructField("L_LINENUMBER",IntegerType,true),
| StructField("L_QUANTITY",DoubleType,true),
| StructField("L_EXTENDEDPRICE",DoubleType,true),
| StructField("L_DISCOUNT",DoubleType,true),
| StructField("L_TAX",DoubleType,true),
| StructField("L_RETURNFLAG",StringType,true),
| StructField("L_LINESTATUS",StringType,true),
| StructField("L_SHIPDATE",StringType,true),
| StructField("L_COMMITDATE",StringType,true),
| StructField("L_RECEIPTDATE",StringType,true),
| StructField("L_SHIPINSTRUCT",StringType,true),
| StructField("L_SHIPMODE",StringType,true),
| StructField("L_COMMENT",StringType,true)
| )
| )
schema: org.apache.spark.sql.types.StructType = StructType(StructField(L_ORDERKEY,LongType,true), StructField(L_PARTKEY,LongType,true), StructField(L_SUPPKEY,LongType,true), StructField(L_LINENUMBER,IntegerType,true), StructField(L_QUANTITY,DoubleType,true), StructField(L_EXTENDEDPRICE,DoubleType,true), StructField(L_DISCOUNT,DoubleType,true), StructField(L_TAX,DoubleType,true), StructField(L_RETURNFLAG,StringType,true), StructField(L_LINESTATUS,StringType,true), StructField(L_SHIPDATE,StringType,true), StructField(L_COMMITDATE,StringType,true), StructField(L_RECEIPTDATE,StringType,true), StructField(L_SHIPINSTRUCT,StringType,true), StructField(L_SHIPMODE,StringType,true), StructField(L_COMMENT,StringType,true))
scala> val dataRowRdd = dataRdd.map(p => Row(p(0).toLong, p(1).toLong, p(2).toLong, p(3).toInt, p(4).toDouble, p(5).toDouble, p(6).toDouble, p(7).toDouble, p(8), p(9), p(10), p(11), p(12), p(13), p(14), p(15)))
dataRowRdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at <console>:30
scala> val dataFrame = sqlContext.createDataFrame(dataRowRdd, schema)
dataFrame: org.apache.spark.sql.DataFrame = [L_ORDERKEY: bigint, L_PARTKEY: bigint ... 14 more fields]
scala> dataFrame.createOrReplaceTempView("lineitem")
scala> spark.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from lineitem where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
|l_returnflag|l_linestatus| sum_qty| sum_base_price| sum_disc_price| sum_charge| avg_qty| avg_price| avg_disc|count_order|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
| N| O|7.5697385E7|1.135107538838699...|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.036487881756|0.04999335309103123| 2968297|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+------------------+-------------------+-----------+
scala> sqlContext.sql("CREATE TEMPORARY VIEW item USING com.aliyun.oss " +
| "OPTIONS (" +
| "oss.bucket 'select-test-sz', " +
| "oss.prefix 'data', " +
| "oss.schema 'L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long, L_LINENUMBER int, L_QUANTITY double, L_EXTENDEDPRICE double, L_DISCOUNT double, L_TAX double, L_RETURNFLAG string, L_LINESTATUS string, L_SHIPDATE string, L_COMMITDATE string, L_RECEIPTDATE string, L_SHIPINSTRUCT string, L_SHIPMODE string, L_COMMENT string'," +
| "oss.data.format 'csv'," + // we only support csv now
| "oss.input.csv.header 'None'," +
| "oss.input.csv.recordDelimiter '\n'," +
| "oss.input.csv.fieldDelimiter '|'," +
| "oss.input.csv.commentChar '#'," +
| "oss.input.csv.quoteChar '\"'," +
| "oss.output.csv.recordDelimiter '\n'," +
| "oss.output.csv.fieldDelimiter ','," +
| "oss.output.csv.commentChar '#'," +
| "oss.output.csv.quoteChar '\"'," +
| "oss.endpoint 'oss-cn-shenzhen.aliyuncs.com', " +
| "oss.accessKeyId 'Your Access Key Id', " +
| "oss.accessKeySecret 'Your Access Key Secret')")
res2: org.apache.spark.sql.DataFrame = []
scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
scala> sqlContext.sql("select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extendedprice * (1 - l_discount)) as sum_disc_price, sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from item where l_shipdate > '1997-09-16' group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus").show()
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
|l_returnflag|l_linestatus| sum_qty| sum_base_price| sum_disc_price| sum_charge| avg_qty| avg_price| avg_disc|count_order|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+
| N| O|7.5697385E7|1.135107538838701E11|1.078345555027154...|1.121504616321447...|25.501957856643052|38241.03648788181|0.04999335309103024| 2968297|
+------------+------------+-----------+--------------------+--------------------+--------------------+------------------+-----------------+-------------------+-----------+