本文通过一些实操案例展示了 Spring AI Alibaba + Nacos 在解决 AI 应用中一系列复杂配置管理挑战的方案,从动态 Prompt 模板的灵活调整、模型参数的即时优化,到敏感信息的安全加密存储。Spring AI Alibaba 简化了对接阿里云通义大模型的流程,内置 Nacos 集成也为开发者提供了无缝衔接云端配置托管的捷径,整体上极大提升了 AI 应用开发的灵活性和响应速度。
本文讲述了 Spring Cloud 应用中结合 Nacos 实现了运行期配置动态更新的功能,以及在此基础上结合 KMS 在不改动代码的情况下对应用使用的敏感配置进行保护,解决将配置迁移到 Nacos 中可能存在的数据安全顾虑,并对其底层工作原理做了简单介绍。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
本文聚焦于线上应用的风险管理,特别是针对“错”(程序运行不符合预期)和“慢”(性能低下或响应迟缓)两大类问题,提出了一个系统化的根因诊断方案。
了解 RocketMQ 5.0 的核心概念和架构概览;然后我们会从集群角度出发,从宏观视角学习 RocketMQ 的管控链路、数据链路、客户端和服务端如何交互;学习 RocketMQ 如何实现数据的存储,数据的高可用,如何利用云原生存储进一步提升竞争力。
本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
在当今数字化转型加速的时代,企业 IT 系统的复杂度与日俱增,如何高效地管理和监控这些系统成为了一项挑战。阿里云作为全球领先的云计算服务商,提供了一整套全面的可观测性解决方案,覆盖从业务、端侧(小程序、APP、H5 等)、应用、中间件、容器/ECS 等全栈的监控体系,旨在帮助企业构建强大而灵活的可观测性体系。其中,标签(Tag)作为一种核心组织和管理手段,在阿里云可观测体系中扮演着至关重要的角色。本文将深入探讨阿里云可观测系列产品中标签的应用,以及如何运用标签在阿里云可观测产品体系下进行体系化建设并给出相关最佳实践。
目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。
你好,我是AI助理
可以解答问题、推荐解决方案等