历经 15 载,如今的飞天盘古系统已迭代至第三代,数千万行代码和 1,000 余项专利,从大规模、到高性能、到高效能的分布式存储系统的演进,更高效地让数据中心成为一台计算机。
大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
了解 RocketMQ 5.0 的核心概念和架构概览;然后我们会从集群角度出发,从宏观视角学习 RocketMQ 的管控链路、数据链路、客户端和服务端如何交互;学习 RocketMQ 如何实现数据的存储,数据的高可用,如何利用云原生存储进一步提升竞争力。
阿里云存储产品高级解决方案架构师欧阳雁(乐忱)分享了中国企业在全闪存高端存储市场的快速增长,指出AI大模型的发展推动了企业级存储市场。去年,高端企业级存储闪存占比约为25%,相较于欧美50%的比例,显示出中国在AI领域的巨大增长潜力。演讲涵盖AI业务流程,包括数据预处理、训练和推理的痛点,以及针对这些环节的存储解决方案,强调了稳定、高性能和生命周期管理的重要性。此外,还介绍了数据预处理的全球加速和弹性临时盘技术,训练阶段的高性能存储架构,推理场景的加速器和AI Agent的应用,以及应对大数据业务的存储考量,如对象存储、闪电立方和冷归档存储产品。
本文将深入探讨 PolarDB-X 列存查询引擎的分层缓存解决方案,以及其在优化 ORC 列存查询性能中的关键作用。
在 Spring Cloud 应用中可以非常低成本地集成 Nacos 实现配置动态刷新,在应用程序代码中通过 Spring 官方的注解 @Value 和 @ConfigurationProperties,引用 Spring enviroment 上下文中的属性值,这种用法的最大优点是无代码层面侵入性,但也存在诸多限制,为了解决问题,提升应用接入 Nacos 配置中心的易用性,Spring Cloud Alibaba 发布一套全新的 Nacos 配置中心的注解。