本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。
本文讲述了 Spring Cloud 应用中结合 Nacos 实现了运行期配置动态更新的功能,以及在此基础上结合 KMS 在不改动代码的情况下对应用使用的敏感配置进行保护,解决将配置迁移到 Nacos 中可能存在的数据安全顾虑,并对其底层工作原理做了简单介绍。
本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。
RocketMQ 作为一款流行的分布式消息中间件,被广泛应用于各种大型分布式系统和微服务中,承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大,安全相关的挑战日益突出,消息系统的访问控制也变得尤为重要。然而,RocketMQ 现有的 ACL 1.0 版本已经无法满足未来的发展。因此,我们推出了 RocketMQ ACL 2.0 升级版,进一步提升 RocketMQ 数据的安全性。本文将介绍 RocketMQ ACL 2.0 的新特性、工作原理,以及相关的配置和实践。
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
在当今数字化转型加速的时代,企业 IT 系统的复杂度与日俱增,如何高效地管理和监控这些系统成为了一项挑战。阿里云作为全球领先的云计算服务商,提供了一整套全面的可观测性解决方案,覆盖从业务、端侧(小程序、APP、H5 等)、应用、中间件、容器/ECS 等全栈的监控体系,旨在帮助企业构建强大而灵活的可观测性体系。其中,标签(Tag)作为一种核心组织和管理手段,在阿里云可观测体系中扮演着至关重要的角色。本文将深入探讨阿里云可观测系列产品中标签的应用,以及如何运用标签在阿里云可观测产品体系下进行体系化建设并给出相关最佳实践。