API First 开发模式的核心在于:以 API 为先,将其视为“头等公民”,在构建应用、服务及集成之前,应优先定义并设计 API 及其配套。API First 作为一种相对较新的开发模式,它已逐渐流行并获得业内的广泛认可。
本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。
本文介绍了如何使用阿里云ROS资源编排服务快速部署和管理云资源。主要内容包括:1. 工具准备:安装ROSCDK,选择合适的代码编辑器和IDE,安装AI代码生成插件等。2. 环境准备:创建工程目录,进入虚拟环境,配置阿里云凭证信息,配置ROSCDK。3. 代码编写:根据文档描述,编写ROS代码来创建VPC、VSwitch、ECS等资源。4. 运行代码:执行ROS代码,创建ECS实例并部署FTP服务。总体来说,本文通过简单的步骤,让小白也能快速上手使用ROS资源编排服务,实现自动化部署和管理阿里云资源。
Modelscope AgentFabric是一个基于ModelScope-Agent的交互式智能体应用,用于方便地创建针对各种现实应用量身定制智能体,目前已经在生产级别落地。
阿里商旅作为飞猪旅行旗下面向企业客户的数字化差旅解决方案产品,依托飞猪旅行机票、酒店供应链为企业客户提供一站式的机票、酒店、火车票、用车等预订管控及结算票据服务。阿里商旅不仅是集团欢行的供应商,而且近几年在商业化差旅市场上崭露头角,服务了2万+中大型客户,43万+小微企业。
Higress 最新的 1.4 版本基于为通义千问,以及多家云上 AGI 厂商客户提供 AI 网关的积累沉淀,开源了大量 AI 原生的网关能力。同时也在 Ingress、可观测、流控等云原生能力上做了全方位升级。