vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
讲述消息系统在现代化演进中软硬一体化,百万队列,分级存储等诸多竞争力特性的诞生和落地效果。探讨业界领先的 Shared-Log 存储计算分离,FFM与协程,RDMA 传输,列式存储等技术,将消息向流的领域延伸。
口腔治疗+函数计算=效率提升🚀 领健作为业界领先的口腔机构,面向口腔诊所提供正畸算法,但早期的算法部署遇到较多问题,因此在对比了阿里云的多个云产品之后,最终选择了函数计算。 通过将 GPU 计算负载放到函数计算,领健技术团队达到了很好的降本效果,相比早前的按月持有 GPU 资源,函数计算的费用降低了 90% 左右,并大大提升了使用体验,实现了前所未有的敏捷性和效率。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
你真的用对了 useRef 吗?在与 TypeScript 一起使用、以及撰写组件库的情况下,你的写法能够避开以下所有场景的坑吗?
本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。