本文将从概念和宏观角度理解什么是流处理。 RocketMQ 5.0,学习 RocketMQ 提供的轻量流处理引擎 RStreams,了解其特性和原理。学习 RocketMQ 的流数据库 RSQLDB,通过流存储和流计算的深度结合,看它如何进一步降低流处理使用门槛。
ZooKeeper 作为应用的核心中间件在业务流程中存储着敏感数据,具有关键作用。正确且规范的使用方法对确保数据安全至关重要,否则可能会因操作不当而导致内部数据泄露,进而带来严重的安全风险。因此,在日常的 ZooKeeper 运维和使用过程中,标准化和安全的操作对于加强企业安全防护和能力建设显得格外关键。为了实现这一目标,MSE 提供了一整套标准化流程,帮助用户以更安全、更简便的方式使用 ZooKeeper,从而加速企业安全能力的提升同时最大程度地降低在变更过程中可能出现的风险。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
阿里云 ARMS 用户体验监控(RUM)推出了针对原生鸿蒙应用的 SDK。SDK 使用 ArkTS 语言开发,支持页面采集、资源加载采集、异常采集及自定义采集等功能,能够全面监控鸿蒙应用的表现。集成简单,只需几步即可将 SDK 接入项目中,为鸿蒙应用的开发者提供了强有力的支持。
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.