在今年的SIGMOD会议上,阿里云瑶池数据库团队的论文《PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory》获得了Industry Track Best Paper Award,这是中国企业独立完成的成果首次摘得SIGMOD最高奖。PolarDB-MP是基于分布式共享内存的多主云原生数据库,本文将介绍这篇论文的具体细节。
近日,2024云栖大会现场,阿里云宣布对其存储服务进行全面升级,围绕 Storage for AI 与 AI in Storage 两大领域,提出“4 Any + 3 AI ”的升级方向,揭示存储基础设施与AI的双向赋能路径。阿里云存储产品将支持更多AI业务高效创新, 同时 AI 技术也将助力基础设施迭代,支持企业更好地管理数据资产。
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。
了解 RocketMQ 5.0 的核心概念和架构概览;然后我们会从集群角度出发,从宏观视角学习 RocketMQ 的管控链路、数据链路、客户端和服务端如何交互;学习 RocketMQ 如何实现数据的存储,数据的高可用,如何利用云原生存储进一步提升竞争力。
阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
本文聚焦于线上应用的风险管理,特别是针对“错”(程序运行不符合预期)和“慢”(性能低下或响应迟缓)两大类问题,提出了一个系统化的根因诊断方案。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。