阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
RocketMQ 早期批处理模型存在一定的约束条件,为进一步提升性能,RocketMQ 进行了索引构建流水线改造,同时 BatchCQ 模型和 AutoBatch 模型也优化了批处理流程,提供了更简便的使用体验,快点击本文查看详情及配置展示~
ARMS RUM 是阿里云应用实时监控服务(ARMS)下的用户体验监控(RUM)产品,覆盖 Web/H5、各类平台小程序、Android、iOS、Flutter、ReactNative、Windows、macOS 等平台框架。接入 SDK 后会主动采集端侧页面性能、资源加载、API 调用、异常崩溃、卡顿、用户操作、系统信息等数据,还支持事件、日志、异常等数据按需自定义上报以满足业务数据分析需求,提供全面的性能分析、异常分析、产品分析、会话分析能力,帮助快速跟踪定位问题原因,提升产品用户使用体验。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
本次课程由阿里云消息队列产品专家杨文婷分享,主题为高弹性、低成本的云消息队列RabbitMQ。内容涵盖四个方面:1) 产品优势,包括兼容开源客户端、解决稳定性痛点和高弹性低成本;2) 架构实现原理,如分布式架构和弹性调度系统;3) Serverless系列带来的按量付费模式和资源池优势;4) Serverless适用场景,如开发测试环境、峰谷流量业务等。最后解答了关于顺序消费、与普通MQ对比、自动扩容及API支持等常见问题。
文章探讨了为什么大规模集群中的可观测性服务会产生大量API请求、API服务器为何对DNS解析至关重要以及故障恢复过程为何缓慢的原因。