通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
当我们熟悉了通义灵码的使用以及 Notebook 的环境后,大家可以共同探索 AIGC 的应用的更多玩法。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
本文介绍了基于函数计算 FC 打造的全新 Function AI 工作流服务,该服务结合 AI 技术与流程自动化,实现从传统流程自动化到智能流程自动化的跨越。文章通过内容营销素材生成、内容安全审核和泛企业 VOC 挖掘三个具体场景,展示了 Function AI 工作流的设计、配置及调试过程,并对比了其与传统流程的优势。Function AI 工作流具备可视化、智能性和可扩展性,成为企业智能化转型的重要基础设施,助力企业提升效率、降低成本并增强敏捷响应能力。
从整体技术架构上学习 RocketMQ 5.0 的云原生架构、一体化架构,最后再分别从业务场景切入,详细介绍 RocketMQ 5.0 在不同的业务场景提供的能力和关键技术原理,包括业务消息、流处理、物联网以及面向云时代的事件驱动场景。
本文将从使用的角度出发,来更详细的展示一下流存储的场景,看看它和业务消息的场景有哪些区别。 RocketMQ 5.0 面向流存储的场景,提供了哪些特性。再结合两个数据集成的案例,来帮助大家了解流存储的用法。
本文将从概念和宏观角度理解什么是流处理。 RocketMQ 5.0,学习 RocketMQ 提供的轻量流处理引擎 RStreams,了解其特性和原理。学习 RocketMQ 的流数据库 RSQLDB,通过流存储和流计算的深度结合,看它如何进一步降低流处理使用门槛。
本文介绍了Higress,一个支持基于WebAssembly (WASM) 的边缘计算网关,它允许用户使用Go、C++或Rust编写插件来扩展其功能。文章特别讨论了如何利用Redis插件实现限流、缓存和会话管理等高级功能。