本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
本文以构建系统可观测为切入点,对比 OpenTelemetry 与 Prometheus 的相同与差异,重点介绍如何将应用的 OpenTelemetry 指标接入 Prometheus 及背后原理以及介绍阿里云可观测监控 Prometheus 版拥抱 OpenTelemetry及相关落地实践案例。
以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。
本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。
近日,2024云栖大会现场,阿里云宣布对其存储服务进行全面升级,围绕 Storage for AI 与 AI in Storage 两大领域,提出“4 Any + 3 AI ”的升级方向,揭示存储基础设施与AI的双向赋能路径。阿里云存储产品将支持更多AI业务高效创新, 同时 AI 技术也将助力基础设施迭代,支持企业更好地管理数据资产。
本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。
基于大语言模型的应用在性能、成本、效果等方面存在一系列实际痛点,本文通过分析 LLM 应用模式以及关注点差异来阐明可观测技术挑战,近期阿里云可观测推出了面向 LLM 应用的可观测解决方案以及最佳实践,一起来了解下吧。