阿里云网络拨测业务提供了全球、多种协议、多种网络态势的用户网络性能和用户体验监控场景的全面可观测方案。该文章从拨测场景下,介绍了用户如何快速的构建一套全球用户视角的服务可用性大盘,为客户的业务保驾护航。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
本文将从概念和宏观角度理解什么是流处理。 RocketMQ 5.0,学习 RocketMQ 提供的轻量流处理引擎 RStreams,了解其特性和原理。学习 RocketMQ 的流数据库 RSQLDB,通过流存储和流计算的深度结合,看它如何进一步降低流处理使用门槛。
直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
ZooKeeper 作为应用的核心中间件在业务流程中存储着敏感数据,具有关键作用。正确且规范的使用方法对确保数据安全至关重要,否则可能会因操作不当而导致内部数据泄露,进而带来严重的安全风险。因此,在日常的 ZooKeeper 运维和使用过程中,标准化和安全的操作对于加强企业安全防护和能力建设显得格外关键。为了实现这一目标,MSE 提供了一整套标准化流程,帮助用户以更安全、更简便的方式使用 ZooKeeper,从而加速企业安全能力的提升同时最大程度地降低在变更过程中可能出现的风险。
基于大语言模型的应用在性能、成本、效果等方面存在一系列实际痛点,本文通过分析 LLM 应用模式以及关注点差异来阐明可观测技术挑战,近期阿里云可观测推出了面向 LLM 应用的可观测解决方案以及最佳实践,一起来了解下吧。
为了更好的进行 Go 应用微服务治理,提高研发效率和系统稳定性,本文将介绍 MSE 微服务治理方案,无需修改业务代码,实现治理能力。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。