本⽂对敏感信息拦截插件的使用方式和实现原理进行了简单介绍,它能够自动检测并处理请求和响应中的敏感词,有效防止敏感信息泄露。通过对不同数据范围的支持和灵活的配置选项,该插件能够适应各种应用场景,确保数据的安全性和合规性。
祝贺 Nacos 社区 Star 数突破 30000!值此时机,回顾过去的两年时间,Nacos 从 2.0.4 版本演进到了 2.4.2 版本,基本完成了当初构想的高性能、易拓展的目标,并且对产品的易用性和安全性进行了提升,同时优化了新的官网,并进行了多语言和更多生态支持。未来,Nacos 会向更安全、更泛化、更云原生的 Nacos3.0 演进。
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。
全球化是对技术架构的终极挑战,面临的不仅仅是技术的问题,而是包含了经济、文化等多因素差异的用户关系问题。积极借助遍布全球的云计算基础设施和云原生的架构设计原则,将能更加高效的构建高可用的全球化技术架构,支持全球业务的持续增长。
接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。