本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。
Qwen3 Coder 是全球领先的开源编程大模型,具备强大的代码生成能力与1M超长上下文支持,适用于构建复杂应用。本文通过实际案例展示其在电商网站开发中的应用,并详解提示词设计、技术拆解与部署方案,探讨Agentic AI落地的挑战与经验。
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
本文章基于业务实践,总结有关客服质检场景的解决方案和处理经验,为相似场景提供可行的借鉴方法。
本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。
通义千问最新推出的QwQ-32B推理模型,拥有320亿参数,性能媲美DeepSeek-R1(6710亿参数)。QwQ-32B支持在小型移动设备上本地运行,并可将企业大模型API调用成本降低90%以上。本文介绍了如何通过Higress AI网关实现DeepSeek-R1与QwQ-32B之间的无缝切换,涵盖环境准备、模型接入配置及客户端调用示例等内容。此外,还详细探讨了Higress AI网关的多模型服务、消费者鉴权、模型自动切换等高级功能,帮助企业解决TPS与成本平衡、内容安全合规等问题,提升大模型应用的稳定性和效率。
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
本文介绍了基于函数计算 FC 打造的全新 Function AI 工作流服务,该服务结合 AI 技术与流程自动化,实现从传统流程自动化到智能流程自动化的跨越。文章通过内容营销素材生成、内容安全审核和泛企业 VOC 挖掘三个具体场景,展示了 Function AI 工作流的设计、配置及调试过程,并对比了其与传统流程的优势。Function AI 工作流具备可视化、智能性和可扩展性,成为企业智能化转型的重要基础设施,助力企业提升效率、降低成本并增强敏捷响应能力。