本文主要介绍了云原生安全的现状以及企业应用在云原生化转型中面临的主要安全挑战以及相对成熟的一部分安全体系方法论,深度解析企业云原生 DevSecOps 体系构建。
本文深入探讨了云时代 EDA 的新内涵及它在云时代再次流行的主要驱动力,包括技术驱动力和商业驱动力,随后重点介绍了 RocketMQ 5.0 推出的子产品 EventBridge,并通过几个云时代事件驱动的典型案例,进一步叙述了云时代事件驱动的常见场景和最佳实践。
本篇为系列第2篇,分享在支付宝支付数据链路改造升级过程中,针对数据倾斜的优化实践新方法,在解决数据倾斜问题的同时,还能兼顾更优的计算性能!
ADB PG是一个经典MPP数据库,长项在于查询分析处理,面对客户联机分析和联机交易(HTAP)场景就显得力不从心,我们在某银行核心系统DB2 for LUW迁移到ADB PG时就遇到类似问题,因此我们提出ADB PG+RDS PG混搭技术架构,来解决客户此类HTAP需求。该混搭架构的精髓在于扬长避短,充分发挥分析型数据库和交易型数据库的长处和特性,分析型数据库专注于数据加工跑批场景,然后批量加工的结果数据卸载到RDS PG,通过RDS PG对外提供高并发对客交易服务。
台州银行数据治理项目携手瓴羊Dataphin,荣获中国信息通信研究院评为“2023年铸基计划高质量数字化转型典型优秀案例”、数字化研究机构沙丘社区选为“2024中国数据资产管理最佳实践案例”双重认可。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比