Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
在 2024 年春节前夕,修正电商事业部面临了前所未有的技术挑战,修正将参与春晚的全民健康好礼派发的活动,且在央视及各大平台进行广告投放,预计流量激增至 16 亿,系统需要承载保底 5 万 QPS,目标 10 万 QPS。修正技术团队迫切需要升级 APP 架构以应对即将到来的超高并发场景。这一挑战不仅是对技术的考验,更是对修正品牌实力的一次展示。为了应对这次巨大的技术挑战,修正技术团队选择与阿里云云原生团队合作,进行 APP 架构的升级。
云效流水线可以托管用户的私网环境内的机器,并将构建任务调度到这些机器上,从而确保整个构建过程,和代码库和制品库的交互在私网环境下进行。
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
本文介绍了一家零售企业如何利用SelectDB进行BI分析及数据服务API的查询。通过Dataphin的数据集成、SQL研发等功能,将CRM、ERP等系统数据汇聚加工,并推送至SelectDB构建销售数据集市层,以支持报表分析及API查询。SelectDB具备实时、统一、弹性及开放特性,适用于多种实时分析场景。文章详细描述了在Dataphin中集成SelectDB的整体方案、数据源配置、数据集成、数据开发及数据服务流程。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
一个有趣的现象引起了作者的注意:当启用行首正则表达式处理多行日志时,采集性能出现下降。究竟是什么因素导致了这种现象?本文将探索Logtail多行日志采集性能提升的秘密。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。