当前PolarDB-X正在全面对接阿里云 ''数据库自治服务 DAS",PolarDB-X限流能力将会以白屏化的方式提供给用户,经一步提升用户体验,降低使用门槛。
本文就通过一个客户的实际案例开介绍如何使用在无法直接开启CEN flowlog的情况下,使用SLS的数据加工能力,从VPC flowlog的数据中过滤出客户需要的流量日志出来。
借助日志治理的现有能力,我们能够在不重启应用的前提下,动态采集任意点位信息,同时由于日志治理在采集信息时会引入链路信息,在分析复杂调用问题时能够起到很好的效果。
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。
PostgreSQL数据库目前被广泛应用于企业的在线业务,这款数据库以其高度的稳定性和完善的产品能力被业界高度赞誉和广泛接受。 本文介绍了两款PostgreSQL引擎的数据库是如何完成一套标准的数据链路同步,开发并让企业可以同时享受PostgreSQL在OLTP & OLAP的场景下的全面能力。
数据库迁云是一个复杂工程,对于传统企业来说,数据库不仅沉淀业务数据,还沉淀了大量业务逻辑,数据迁移过程复杂,风险高。本文借用客户核心系统数据库迁移到PolarDB为例,介绍数据库迁移过程中遇到的挑战、对应的解决方案,供大家参考。
在Kubernetes 日志查询分析实践中,我们介绍了如何通过 DaemonSet 方式部署 logtail 并采集标准输出/文件两种形式的数据。DaemonSet 部署的优势在于其能够尽可能地减少采集 agent 所占用的资源且支持标准输出采集,但因为每个 DaemonSet pod 需要负责 n...