将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
本文介绍通过 AnalyticDB PostgreSQL 版基于实时物化视图,构建流批一体的一站式实时数仓解决方案,实现一套系统、一份数据、一次写入,即可在数仓内完成实时数据源头导入到实时分析全流程。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
通过阿里云的 Serverless 产品和技术,盟主直播实现了核心直播平台的云原生架构升级,不仅解决了盟主直播现有业务面临的挑战,还面向未来为盟主直播的平台扩展性提供了技术基础,有效提升了行业竞争力。