近日,2024云栖大会现场,阿里云宣布对其存储服务进行全面升级,围绕 Storage for AI 与 AI in Storage 两大领域,提出“4 Any + 3 AI ”的升级方向,揭示存储基础设施与AI的双向赋能路径。阿里云存储产品将支持更多AI业务高效创新, 同时 AI 技术也将助力基础设施迭代,支持企业更好地管理数据资产。
阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
从海量的日志数据中,按照各种灵活的条件进行即时查询搜索,是可观测场景下的基本需求。本文介绍了 SLS 新推出的高性能 SPL 日志查询模式,支持 Unix 风格级联管道式语法,以及各种丰富的 SQL 处理函数。同时通过计算下推、向量化计算等优化,使得 SPL 查询可以在数秒内处理亿级数据,并支持 SPL 过滤结果分布图、随机翻页等特性。
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。