近日,2024云栖大会现场,阿里云宣布对其存储服务进行全面升级,围绕 Storage for AI 与 AI in Storage 两大领域,提出“4 Any + 3 AI ”的升级方向,揭示存储基础设施与AI的双向赋能路径。阿里云存储产品将支持更多AI业务高效创新, 同时 AI 技术也将助力基础设施迭代,支持企业更好地管理数据资产。
今天分享一下,基于阿里云函数计算 FC 以及 CAP(云应用开发平台),极速托管专属的 CosyVoice 应用。并且我们提供了 API 调用方案以及镜像构建源码方便您根据自己的业务任意 DIY。
本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
我已经是阿里云ECS产品的老用户了,阿里的云计算产品性能可靠性毋庸置疑,这次分享一个开源蜜罐系统Hfish的单节点搭建,并围绕ECS周边的技术功能做个简单举例。
随着业务和产品的发展、团队的不断扩大,很多团队都不可避免的会遇到需求流程混乱的问题。虽然有的团队也编写了一些“需求流程规范”的文档,但最终却流于纸面,难以在团队真正落地。如何科学制定并有效落实需求管理规范呢?对此,云效产品经理陈逊进行了非常详细的直播分享,本文是他经验的文字总结。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
本文围绕阿里云CSI(Container Storage Interface)镜像构建的实际案例,探讨了一系列优化容器镜像的最佳实践。
本篇主要简单介绍了在AI时代由‘大参数、大数据、大算力’需求下,对GPU算力管理和分配带来的挑战。以及面对这些挑战,GPU算力需要从单卡算力管理、单机多卡算力管理、多机多卡算力管理等多个方面发展出来的业界通用的技术。