在本文中,我们将深入探讨为何选择 iLogtail,以及它在 SPL 数据处理方面相较于 Logstash 有何独特优势。通过对比这两款工具的架构、性能以及功能,我们希望能够揭示 iLogtail 如何在日益复杂的日志处理需求中脱颖而出,帮助您做出明智的技术选择。
SAE 事件中心通过智能诊断显示通知与用户连接起来,SAE WEB 百毫秒弹性实例给事件中心带来了新的实时性、海量数据和高吞吐的挑战,本篇将带您了解 SAE 整体事件中心的架构和挑战。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
在本文中,作者介绍了 Lingma SWE-GPT,一款专为解决复杂软件改进任务设计的开源大型语言模型系列。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
年会中的抽奖环节不可或缺,但每年为了选择合适的抽奖小程序,团队往往需要投入大量时间和精力。然而,抽奖结束后,参与者通常只记得自己是否中奖,其他细节多被遗忘。在 AI 技术日益成熟的今天,如何打造一个既高效又有技术含量的抽奖应用呢?今天,就让我们跟随通义灵码,仅用 5 分钟现场手撕一个抽奖应用吧!
日志审计的必要性在于其能够帮助企业和组织落实法律要求,打破信息孤岛和应对安全威胁。选择 SLS 下日志审计应用,一方面是选择国家网络安全专用认证的日志分析产品,另一方面可以快速帮助大型公司统一管理多组地域、多个账号的日志数据。除了在日志服务中存储、查看和分析日志外,还可通过报表分析和告警配置,主动发现潜在的安全威胁,增强云上资产安全。
该文档详细介绍了阿里云一键部署和手动部署多媒体数据存储与分发方案的步骤。一键部署通过资源编排服务(ROS)实现自动化,涵盖注册账号、开通服务、创建OSS Bucket、配置CDN加速及绑定IMM等功能,简化了复杂操作。手动部署则更细致地展示了每个配置环节,包括网络规划、资源创建、域名绑定、CDN配置、证书加密及最终的验证与清理,确保用户对整个流程有清晰理解。两种方式均以OSS为核心,支持数据上传、转码处理和加速分发,保障高效稳定的用户体验。